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Abstract

The basic premise of this thesis is that Bayesian Decision Theory
(BDT) can and should be used to solve clinical trial design problems.
While the flexibility of the framework allows for accommodating a great
variety of situations, it also requires an explicit consideration of the gains
and costs associated with the trial. This leads to an increased under-
standing of how the optimal design depends not only on statistical con-
siderations, but also on the consequences of the decisions made during
and after the trial.

The main contribution of the thesis consists of the four papers ap-
pended. In Paper I, optimisation is done by a drug company, taking the
approval decision of a regulatory authority and the reimbursement deci-
sion of a health care insurer into account. A particular point of interest in
this model is the effect that the uncertainty surrounding the insurer’s will-
ingness to pay has on the company’s optimisation. Papers II and III are
both concerned with comparing a number of different designs in the spe-
cial case where the patient population can be partitioned using a binary
biomarker. While Paper II restricts the analysis to single-stage designs,
Paper III also considers adaptive, two-stage designs. The main method
of analysis in all these papers is backward induction. Paper IV revisits
Anscombe’s classical model on fully sequential trials and also considers a
number of different extensions. Approximate solutions are obtained using
continuous-time optimal stopping theory. In addition to the papers, the
thesis includes a discussion of the problem of optimal regulation of clinical
trials, and defines and solves two simple example models.

Since several of the analyses presented in this thesis provide a detailed
demonstration of how to formulate and solve clinical trial design problems,
it should be of interest to statisticians seeking to apply BDT to real-
world problems. Further, since the implications that the solutions have
for regulation and reimbursement are discussed at several places, it should
also be of value to government agencies tasked with creating an efficient
environment for drug development.

Keywords: Bayesian statistics, decision theory, clinical trials, drug regulation,
subgroup analysis, optimal stopping.
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Chapter 1

Introduction

Suppose that a new medical treatment has been discovered. Based on chemical
analyses, simulation models and tests on animals, there is some indication that
the treatment has a positive effect for a population of patients afflicted with
a certain disease. However, no data has been collected on the actual medical
response of the patient population when given the new treatment. Therefore, a
substantial amount of uncertainty remains regarding whether or not the good
effects outweigh any bad side effects. To reduce this uncertainty, a clinical trial
is performed. In such a trial, a certain number patients are recruited and given
the new treatment. After having observed the trial results, the decision maker
responsible for approving the treatment for distribution will be better informed,
and the probability of approving a bad treatment or rejecting a good treatment
is smaller.

The situation just described can be formulated as a two-stage decision prob-
lem. In the first stage, a sample size for the trial is chosen. Then the trial is
performed, yielding data used to estimate the effect of the treatment. In the
second stage, the treatment is either accepted or rejected based on the estimate.
But which sample size is optimal? On the one hand, a large sample size leads
to less uncertainty when the approval decision is made. On the other hand, a
large trial requires more resources to perform, resources that may very well be
of better use in some alternative project. Moreover, a larger trial takes a longer
time to execute. If the treatment has a large positive effect, this means that the
patient population will have to wait longer for a potentially life-saving treat-
ment. If the treatment has a large negative effect, a large number of patients
will suffer in the trial. Hence, there is a basic trade-off between the information
provided and the costs (monetary and pure health costs) incurred. Optimising
the sample size corresponds to finding the most beneficial balance.

By viewing the trial design problem as a decision problem, it is possible to
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2 Chapter 1. Introduction

apply the same methodology in the search of an optimal design regardless of
the specifics, provided that a framework for handling general decision problems
is available. One such framework is Bayesian Decision Theory (BDT), the main
tool used to formulate and solve the trial design problems considered in this
thesis. It has many advantages. First, it is based on a mathematical, axiomatic
foundation. Second, the theory is very general, and may be applied to any
decision problem once some basic structure has been introduced. Third, its
use is well established in the literature, implying that a great number of specific
applications are available to draw inspiration from, and also that many methods
have been devised to deal with the computational challenges involved when
searching for the optimal solution. The main alternative to BDT is commonly
referred to as the classical or frequentist approach. As noted by Senn (2007),
the classical approach is really a hybrid one, employing the Neyman-Pearson
framework during the design stage while being Fisherian during analysis. The
purpose of this thesis is not to enter into a detailed discussion comparing these
approaches. Much has been published on this issue and the interested reader will
have no trouble finding excellent overviews in the literature (see, for example,
Bayarri and Berger (2004)).

The reader will find that the papers included in this thesis sometimes take
a special interest in what happens when the target population for the medical
treatment is small. The reason is that most of the work presented was done as
part of an EU project called Integrated DEsign and AnaLysis of clinical trials in
small population groups (IDEAL). Small population groups may arise because
the treatment is for a rare disease or is only expected to work in a small subset
of the total population. Trial design in such situations often requires a more
careful analysis of how to make the most of the necessarily small sample sizes.
From a regulatory perspective, small population groups also raise questions that
are not purely statistical. If a pharmaceutical company expects the final market
to be small, will it view basic research in this area as a viable investment? If
not, what needs to be changed in the regulatory structure so as to incentivise
more research targeting small population groups? The economic resources of
any society are limited, so how should the cost of implementing the incentives
be balanced against the potential health gains?

1.1 A brief history of clinical trials

A clinical trial is an experiment performed on human subjects for the purpose
of generating data that may be used to estimate the efficacy and safety level
(i.e., any harmful side-effects) of a new medical treatment. Note that there is
a slight difference in meaning between the terms efficacy and effectiveness in
the clinical trials literature. Efficacy is the extent to which a treatment does



1.1. A brief history of clinical trials 3

more good than harm under ideal circumstances. Effectiveness, on the other
hand, assesses whether a treatment does more good than harm when provided
under usual circumstances of healthcare practice (Haynes, 1999). Following
the literature, the term drug is often used in this thesis to refer to a chemical
substance meant to treat some medical condition. However, in many cases the
discussion also carries over to other kinds of treatments, for example a particular
surgical procedure.

The idea that some kind of testing under controlled forms on humans should
be required for new drugs might seem obvious. However, the establishment and
subsequent development of the various governmental bodies responsible for as-
certaining adequate testing has been a gradual process. Often, the regulatory
rules have been extended as a direct response to drugs with severe side effects
having been marketed. A very important part of modern clinical trial method-
ology is the inclusion of a control group in addition to the group of test subjects
given the medical treatment. The subjects in both groups are typically recruited
from the same population and then assigned to one of the two groups by means
of some randomisation procedure. This serves to ensure that the any effects
observed are really due to the treatment given and not circumstantial. While
various forms of medical experimentation in its most general sense have been
performed for thousands of years, the crucial idea of comparing with a control
group is of a later origin. One of the first proper clinical trials in this respect
was performed in 1747 by the Scottish physician James Lind (Baron, 2009), who
divided a number of sailors afflicted with scurvy into different groups and noted
that the group given oranges and lemons fared much better than the others.
The first randomised curative clinical trial tested the drug streptomycin, aimed
at curing pulmonary tuberculosis, and was carried out 1946-1947. The trial
compared the active treatment with a placebo, and was also double-blinded
(Hart, 1999).

As the production of pharmaceuticals became industrialised and the con-
sumer market grew during the 20th century, a number of medical disasters
prompted the establishment of various regulatory authorities. A well-known
example is the drug Elixir Sulfanilamide, which had never been tested in hu-
man subjects before market introduction. Its use eventually led to more than
100 deaths and to the passing of The Federal Food, Drug and Cosmetic Act in
the US in 1938, requiring pharmaceutical companies to submit reports on the
safety of new drugs. The later Kefauver-Harris Amendment of 1962 strength-
ened the safety requirements and also introduced requirements on efficacy for
the first time (Chow and Liu, 2014).
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1.2 Clinical trials today

Spiegelhalter et al. (2004) use the following classification for the stakeholders
involved in the clinical development process. The sponsor is the one who pays
for the trial, for example a pharmaceutical company. The investigators are
responsible for the actual conduct of the clinical trial. Based on confirmatory
trial results, reviewers evaluate efficacy and safety and decide on market ap-
proval, while policy-makers estimate the cost-benefit impact of introducing the
new drug.

A slightly different terminology is used in this thesis. It will be assumed that
the investigator is the same as the sponsor. If the sponsor is a pharmaceutical
company, it will be referred to as a commercial sponsor. A reviewer is referred to
as a Regulatory Authority (RA). Using the clinical trial evidence provided by a
sponsor, it decides on marketing approval for a proposed treatment. If approval
is granted, a Health Care Insurer (HCI) then decides on the level of payment
for the new treatment. This terminology can be applied to the regional EU and
US markets. In the US, the Food and Drug Administration (FDA) takes on the
role as the RA. Payment is typically provided by private insurance companies,
which thus constitute the HCI’s. In the EU, the RA is instead the European
Medicines Agency, with the expressed purpose of harmonising the work of the
national level regulatory bodies within the EU (EMA, 2016). The HCI’s in the
EU are the country-level health care authorities or insurance companies.

Even if the rules that the RA uses to decide on whether or not to approve
a new drug vary considerably in practice, some conventions are in use. For
example, in section 3.5 of the International Council for Harmonisation of Tech-
nical Requirements for Pharmaceuticals for Human Use’s guidance on efficacy
E9 (ICH, 2016), it is stated that

Conventionally the probability of type I error is set at 5% or less
or as dictated by any adjustments made necessary for multiplicity
considerations; the precise choice may be influenced by the prior
plausibility of the hypothesis under test and the desired impact of
the results. The probability of type II error is conventionally set
at 10% to 20%; it is in the sponsor’s interest to keep this figure as
low as feasible especially in the case of trials that are difficult or
impossible to repeat. Alternative values to the conventional levels
of type I and type II error may be acceptable or even preferable in
some cases.

The particular value of 5% was suggested by Fisher (1946) as a convenient
cutoff level to reject a null hypothesis. However, Fisher did not intend that
this level be fixed regardless of application. Rather, he recommended that
a specific level be set according to circumstances (Fisher, 1956). In addition
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to requirements on what constitutes a demonstration of efficacy, the RA also
considers safety aspects, but the precise nature of these are often not as explicit
as the requirements on efficacy.

The level of reimbursement decided by the HCI is typically based on the
benefit-risk balance and/or the cost of the treatment. Clearly, the extent to
which monetary and purely health related concerns should be combined is a
complex ethical issue. It is therefore no surprise that the HCI conduct differs
greatly between individual countries. One HCI of particular importance to this
thesis is the National Institute of Clinical Excellence (NICE) in the UK. In
Paper I, NICE serves as a specific example of a HCI that is willing to directly
associate an incremental health benefit with a monetary cost. In order to do
this, the positive and negative health effects of the drug are combined so as to
form a quantity referred to as Quality Adjusted Life Years (QALYs).

1.2.1 The phases of a clinical trial

The entire drug development process can be divided into the following stages:
(1) drug discovery, (2) laboratory development, (3) animal studies, (4) clinical
trials, and (5) regulatory approval. The focus in this thesis is on the last two
stages. It is a widespread convention in the industry to further divide the stage
consisting of the clinical trials into five different phases:

Phase 0 First-in-human trials in which subtherapeutic doses are given to a
small number of subjects. The aim is to confirm that the drug’s phar-
macodynamics (what the drug does to the body) and pharmacokinetics
(what the body does to the drug) are as expected.

Phase 1 Small trial typically involving less than a hundred subjects. The main
purpose of this phase is to determine which dosage levels are safe and to
begin to register any short-term side effects associated with the drug.

Phase 2 The main objective of this phase is to find the proper dosing for
the new drug, striking a balance between its beneficial effects and any
potential side effects.

Phase 3 This is the final confirmatory phase before acceptance or rejection of
the new drug, and consists of one or several relatively large trials. The
purpose is to confirm the efficacy of the drug and to ensure that any
short-term or long-term side effects constitute an acceptable risk.

Phase 4 This phase consists of studies made after market introduction of the
new drug. If conducted, the data provided can help in adjusting the
dosage for different subpopulations and also be used to discover any rare
side effects which remained undiscovered in phase 3.
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In principle, BDT can be used to optimise all of the phases above. However,
this thesis is mainly concerned with the design of confirmatory phase 3 trials.
There are two main reasons for this. Firstly, confirmatory trials are the largest
and most expensive ones, which suggests that most of the potential gain that
may be obtained through optimisation can be traced to improvements of this
phase. Secondly, since the regulatory approval stage immediately follows phase
3, it is possible to analyse, in a relatively direct way, how changes to the RA’s
approval rule or the HCI’s payment rule affects the optimal trial design.

The present day gold standard for a clinical trial is one which is placebo-
controlled, randomised and double-blinded. It would be safe to say that the data
produced by such a trial is viewed by the wide majority of clinical researchers
as constituting a solid basis for estimating the medical value of the drug in-
vestigated. A trial is said to be placebo-controlled if the active treatment is
compared with some alternative, called the placebo, with no therapeutic effect.
Randomisation means that patients recruited to the trial are assigned either the
active treatment or placebo via some procedure involving chance. The design
of proper randomisation procedures is a challenge in itself and there is a large
literature on the subject. However, such procedures are not a topic of this the-
sis. For our purposes, it is perfectly fine to employ the simple conceptual model
that each recruited patient in a trial with two alternatives is assigned a group
based on the flip of a (possibly weighted) coin. A single-blinded study is one
in which the patients do not know which of the treatment alternatives they are
given. Obviously, this will only be practical if the placebo can be made nearly
indistinguishable from the active treatment. The trial is called double-blinded
when also the investigators responsible for the trial are kept uninformed about
the specific alternative given to each patient until the study has been finished
and evaluation of the results is at hand. The reason for such blinding is to
prevent the investigators from handling the two groups differently, even if such
influence only occurs on an unconscious level.

The costs involved in bringing a new drug to the market today are quite
substantial. Using data from 2004 through 2012, Sertkaya et al. (2016) estimate
the average costs for phase 1, 2 and 3 to be in the ranges 1.4-6.6, 7.0-19.6 and
11.5-52.9 million US dollars, respectively, where the upper and lower limits of
the ranges correspond to different therapeutic areas. While there are exceptions,
it typically takes several years to go through all the phases. An estimate of the
average times required for the total clinical programme and the subsequent
approval is provided by Kaitin and DiMasi (2011). In the US, for the 5-year
period 2005-2009, average times of 6.4 years and 1.2 years, respectively, are
reported. Note that several years have typically been spent on pre-clinical
research before a drug enters the clinical development stage.
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There are a large number of excellent books and review articles available on
the subject of clinical trials. Chow and Liu (2014) provide a broad overview of
both the practical and theoretical issues of the design and analysis of clinical
trials. They cover the regulatory structure for approval of new treatments as
implemented by the FDA and the basic statistical methods available for different
kinds of trials. Spiegelhalter et al. (2004) is another good reference. Although
the focus is on the use of the Bayesian approach for clinical trial design, it also
covers issues connected to health-care evaluation. An introduction to adaptive
Bayesian designs is given by Berry et al. (2011). A recent publication by Ondra
et al. (2016) provides a review of different trial designs involving biomarkers that
have been proposed in the literature, which provides a context for the results
presented in papers II and III.

1.3 Brief summary of the contributed papers

The common thread in all four papers is that the clinical trial design problem
is formulated using BDT. The optimal solution is then found by maximising
expected utility. Since the general approach is fixed, the most challenging part
of the work has been to find a good balance between model complexity and
realism.

Paper I is concerned with a two-stage problem in which a commercial sponsor
first chooses a sample size for a confirmatory trial. Given that the results are
good enough for market approval, the second choice for the sponsor is that of
a price for the new treatment. The ratio between the price and the estimated
effect from the trial is finally used by a HCI to determine if the new treatment
should be reimbursed via a public health care system. The main point of interest
is that the HCI’s Willingness To Pay (WTP) for a unit increase in effectiveness
may be unknown to the sponsor when it proposes a price for the new treatment.
It is shown that the optimal design of the sponsor depends on the degree of this
uncertainty, and that it may in some cases be beneficial for both the sponsor
and the HCI to reduce it. In other words, for HCI’s employing the kind of
cost-effectiveness threshold assumed in the model, an increased transparency
on its precise value may be warranted.

Papers II and III both consider trial optimisation in a situation where
the total population can be divided into two subgroups defined by means of
a biomarker. According to Biomarkers Definitions Working Group (2001), a
biomarker may be defined as

A characteristic that is objectively measured and evaluated as an
indicator of normal biological processes, pathogenic processes, or
pharmacologic responses to a therapeutic intervention.
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A biomarker can be either prognostic or predictive (or both). A prognostic
biomarker is one which can be used to characterise the general outcome for a
patient with a certain condition, independently of any specific treatment. In
contrast, a biomarker is predictive only with respect to a specific treatment. In
general, there are both discrete and continuous biomarkers. Papers II and III
only consider the special case of a predictive binary biomarker.

Paper II compares three different design types. All of them results in single-
stage decision problems, where the main question is which sample size to choose.
The optimal type of design depends on the circumstances, such as the prior be-
liefs about the effect sizes of the treatment in the two subgroups and the specific
cost structure of the design. Paper III extends Paper II by also optimising adap-
tive, two-stage designs. Such designs allow the trial designer to look at the data
before the confirmatory trial has been completed, and adapt the design based
on the information obtained so far. Moreover, the designs considered in Paper
III allows for adjusting the patient recruitment so as to obtain a trial subgroup
prevalence that differs from the prevalence in the target population. It is shown
that this additional flexibility leads to superior designs in some situations.

Both Paper II and Paper III consider the trial design problem from two dif-
ferent angles, from the viewpoint of a commercial sponsor and from the view-
point of a public health decision maker. Since these two decision makers have
different goals, the former being driven by profit maximisation and the latter by
public health concerns only, whether or not a given design is considered optimal
will depend on the perspective adopted.

The last contribution of this thesis, Paper IV, stand out from the others in
that the optimisation is performed over a large number of stages. Each stage
corresponds to a pair of patients recruited to the trial, and the objective is to
find the optimal rule for when to stop the trial. The basic model analysed is well
known in the literature as Anscombe’s model. Instead of directly solving this
multi-stage decision problem using the standard method of backward induction,
a connection is established between the discrete time problem and an optimal
stopping problem in continuous time. The solution of the latter problem then
constitutes an approximation to the solution of the former. In contrast to
Paper I, where a specific form of HCI reimbursement was analysed, and papers
II and III, in which trial designs were optimised in a quite specific setting of
biomarker subgroups, the model analysed in Paper IV is not directly applicable
to a particular, realistic trial setting. Instead, it is formulated using a minimum
of assumptions, and the conclusions that may be drawn from the form of its
solution can therefore be argued to be more generally applicable than the ones
obtained for the models in the other papers.
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1.4 Optimal regulation

The optimal designs obtained in the papers should be of interest to any trial
designer facing a problem close to the models developed. However, perhaps
even more valuable are the conclusions that may be drawn from these analyses
regarding the behaviour of commercial sponsors facing different types of regu-
latory structures. As noted previously, the specific rules in place differ between
countries, but they typically provide at least partial answers to the following
questions:

• How much evidence must be provided by the clinical trial before deciding
on market approval?

• After the trial, how large should the estimated effect be in order to approve
the treatment?

• How should companies be reimbursed after approval?

Suppose that the trial designer is a pharmaceutical company. A given, fixed
set of rules will then lead to a design which is optimal from the company’s
perspective, but may not be so from a public health perspective. By changing
the regulatory rules, the effect on public health will change and one sees the
possibility of establishing an optimal set of rules. None of the papers contains a
full analysis of this optimal regulation problem. However, the analyses provided
give a basis for performing a local analysis of how the behaviour of the com-
pany changes when the regulatory rules are perturbed. The optimal regulation
problem is a natural next step after trial optimisation, and the thesis therefore
includes a broader discussion of this issue in Chapter 5.

1.5 Overview of thesis

Chapter 2 contains an introduction to BDT. It covers the basic structure that
needs to be specified before optimisation can begin, such as the prior and the
utility function, and explains the distinction between single-stage and sequential
decision problems. The main tool used to solve the design problems in the
thesis, backward induction, is considered in some detail and applied to a simple
two-stage example for illustration. The material is aimed at readers with some
basic knowledge of probability theory, but with little prior exposure to Bayesian
statistics or decision theory. However, the content of the chapter is completely
standard, and contains no sophisticated theoretical results. Hence, it can be
safely skipped by readers with some prior experience with BDT methods.

Since the theory of optimal stopping for continuous-time stochastic processes
is used in Paper IV, a very brief introduction is provided in Chapter 3. It will
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be useful for readers with some knowledge of stochastic processes that wants
a quick review of the basic concepts before reading Paper IV. In particular, it
states a result involving the Girsanov transform, which turns out to be a vital
tool in our approach to solving Anscombe’s problem.

Chapter 4 provides a more detailed summary of each of the papers than that
provided in the introduction. It may be used to gain a quick overview of the
papers, and hopefully serves to guide the reader to those of particular interest.
The material in Chapter 5, on optimal regulation, is largely independent of the
models analysed in the papers. Essentially, it consists of a short report on a few
problems I’ve worked with after the publication of the papers on optimal trial
design. The models analysed are very simple, and none of the results obtained
have been published. However, I do think that the basic approach described
shows some promise as a vehicle for solving more realistic problems. A general
discussion of clinical trial optimisation that connects the contributions of this
thesis to others in the literature is given in Chapter 6, and I summarise my
conclusions in Chapter 7.

The two chapters of the appendix contains supporting material of a more
technical nature that I hope will help to make the thesis more self-contained.
Appendix A introduces the concept of the family-wise error rate, used in pa-
pers II and III, and describes how it may be controlled using a multiple testing
procedure. In particular, it provides a rather detailed discussion of a procedure
called the Spiessens-Debois test, a crucial part of the model in Paper II. Fi-
nally, Appendix B gives a brief review of two basic results from real analysis,
the implicit function theorem and the envelope theorem, which are used when
showing the more technical results in Paper I.



Chapter 2

Bayesian decision theory

A formal derivation of BDT can be given from a basic set of axioms of ratio-
nality. These are mathematical versions of rules that, presumably, any decision
maker that wants to avoid certain inconsistent behaviour would want to ad-
here by. Proceeding from these, it is possible to show the basic tenets of BDT,
namely, that (1) degrees of belief should follow the laws of probability theory,
(2) preferences for different outcomes should be representable as a utility func-
tion, and (3) that the optimal action when faced with uncertainty is always
to choose the alternative that maximises expected utility. Since the topic of
this thesis is on applications of BDT rather than fundamentals, an exposition
of these results will not be given here. Instead, the principle of expectation
maximisation is accepted as a valid approach to making rational decisions, and
we will proceed to outline the basic structure needed to formulate and solve
applied problems. For a comprehensive reference on the foundations see, for
example, Bernardo and Smith (1994).

2.1 Decision problems

An abstract decision problem may be described as an ordered list with four
components, (D,Q, π, u), where

1. D is a set of available decisions, from which a particular choice d ∈ D is
to be made.

2. Q is a set of possible values for all the quantities that are unknown to the
decision maker. It is assumed that a specific value q ∈ Q corresponds to
the true state of the world, but that it is unknown at the time the decision

11
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must be made. Note that q may be a single real number or a vector of
numbers.

3. π is a probability distribution on the set Q which formalises the personal
beliefs held by the decision maker about the true state of the world. In the
language of probability theory, Q is a sample space and π is a probability
measure on Q.

4. u = u(d, q) is a utility function mapping each possible combination of
a decision d and state q into a real number. The interpretation is that
u(d, q) is the personal value that the decision maker places on making the
decision d under the assumption that q is the true state of the world. The
utility function formalises the decision maker’s preferences.

Having fully specified the problem, the objective of a rational decision maker is
to find the decision which maximises the expected utility, that is, the goal is to
solve

max
d∈D

E [u(d,Q)] , (2.1)

where Q is a random variable with distribution π.1

2.2 Sequential decision problems

Suppose that the decision maker faces a multi-stage problem in which n decisions
are to be made in a sequence. At each stage, an element di ∈ Di is to be selected,
i = 1, . . . , n. It is assumed that this selection leads to an outcome xi ∈ Xi

which is observed by the decision maker before proceeding to stage i+ 1. This
has two consequences. First, the decision maker can condition its probability
distribution for all future observations and other unknown quantities on the
observations x1, . . . , xi made so far. Second, the decision maker can also let the
decision di+1 depend on x1, . . . , xi, since these values are known at the time the
decision is to be made. Hence, while d1 is just selected as an element of D1, d2
may be taken as the value of a function which maps each possible outcome x1

into an element of D2. In other words, the search is not for an optimal sequence
of pure decisions, but for a sequence of decision rules δ1, . . . , δn which maps
previous observations into pure decisions at each stage. The entire sequence of
decision rules is often called a policy or plan, the idea being that the decision
maker can think about and commit to a course of action for the entire problem
before making the first decision.

1We follow the convention of denoting random variables by capital letters and specific
realisations by the corresponding small letters.
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This sequential setup can be formulated as an abstract decision problem of
the form described in the previous section. Set2

D = {(δ1, . . . , δn) | δ1 ∈ D1, . . . , δn : X1 × · · · × Xn−1 → Dn} ,
Q = X1 × · · · × Xn × T .

Here, T denotes a space containing all unknown quantities except the observa-
tions. An element of this space will be denoted by θ.

In this abstract formulation, π is a probability measure on X1×· · ·×Xn×T
which will be updates using Bayes’ rule after each observation is made. The
abstract form of the utility function is u = u(d, q), as before. However, if we
make the very natural assumption that the utility should only depend on the
pure decisions made at each stage, and not on the parts of δi which are not used
given the previous observations, then we may write

u(d, q) = u(δ1, . . . , δn, x1, . . . , xn, θ) = u(d1, . . . , dn, x1, . . . , xn, θ),

where
d1 = δ1, d2 = δ2(x1), . . . , dn = δn(x1, . . . , xn−1).

So the utility function only needs to be specified for every sequence of pure
decisions, observations and possible value for θ.

2.3 Backward induction

It should be intuitively clear that in order to find the optimal decision today, the
decision maker must consider which situations that are possible tomorrow and
how these should be optimised. Hence, to find the optimal plan in a sequential
decision problem, it is necessary to look ahead and think about the future. This
basic idea may be formalised and turned into a method for solving sequential
decision problems which is called backward induction. Conceptually, the method
works for all decision problems with a finite number of stages, although the
computations required grows with the number of stages and may eventually
make the problem intractable. For simplicity, the method will now be illustrated
for a two-stage problem. It works exactly the same for any finite number of
stages.

Backward induction finds the optimal plan d∗ = (δ∗1 , δ
∗
2(x1)) by proceeding

backwards in the decision problem while computing a sequence of induced util-
ities. The first step is to compute the expected utility of choosing d2 given that
d1 led to x1 in the first stage,

ū(d1, d2, x1) ≡ E [u(d1, d2, x1,Θ)|d1, d2, x1] .

2As usual, the symbol × denotes the Cartesian product operator.
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This is done for all triples (d1, d2, x1) ∈ D1×D2×X1. Since the decision maker
is free to choose any d2 ∈ D2, the rational choice is to select the one maximising
ū. Therefore, the optimal decision rule is

δ∗2(d1, x1) = argmax
d2∈D2

ū(d1, d2, x1),

with a corresponding induced expected utility

ū∗(d1, x1) ≡ ū(d1, δ
∗
2(d1, x1), x1) = max

d2∈D2

ū(d1, d2, x1).

The next step is to find the pure decision δ1 = d1 that maximises the ex-
pected utility of observing the outcome x1, given that the optimal rule δ∗2(d1, x1)
is subsequently followed. The induced expected utility corresponding to a spe-
cific d1 may be written as

ũ(d1) ≡ E [ū∗(d1, X1)|d1] .

The optimal choice of δ1 = d1 is therefore

d∗1 ≡ argmax
d1∈D1

ũ(d1),

with a corresponding optimal expected utility

ũ∗ ≡ ũ(d∗1) = max
d1∈D1

ũ(d1).

It may be shown that the optimal plan d∗ = (δ∗1 , δ
∗
2(x1)) constructed in this

way solves the problem in Eq. (2.1).

2.4 Example: Optimisation of sample size

In order to illustrate an application of the method of backward induction to
a problem in the area of clinical trial design, this section presents an example
of sample size optimisation in the context of a parallel-group trial comparing a
new treatment A with a placebo alternative B. A balanced randomisation of
n patients to the two groups is assumed, implying a per-group sample size of
n/2. The unknown, incremental efficacy of A vs. B is denoted by θ. The indi-
vidual responses in the two arms are assumed to be independent and identically
distributed random variables which are combined into two sample means, X̄A

and X̄B . The variance of each individual response is for simplicity assumed to
be known and equal to σ2. Based on the central limit theorem, the difference
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X̄ = X̄A − X̄B is used to estimate θ assuming a normal distribution according
to

X̄ | n, θ ∼ N
(

θ, 4σ2/n
)

.

To simplify the calculations, a normal conjugate prior with zero mean is assumed
for θ,

θ ∼ N
(

0, 4σ2/n0

)

.

This normal conjugate model implies that the posterior distribution of θ given
an observed value x̄ is also normal (Raiffa and Schlaifer, 1961),

θ | n, x̄ ∼ N
(

nx̄

n0 + n
,

4σ2

n0 + n

)

.

Writing the prior variance as 4σ2/n0 makes it easy to compare the amount of
information about θ in the prior with the information about θ provided by the
trial sample.

The decision procedure is as follows. First, a non-negative sample size n ∈
[0, N ] is selected, where N > 0 denotes the total size of the target population
for the new treatment. After the trial, a decision d ∈ {0, 1} is taken on which
treatment to give to the patients in the target population, where d = 1 and
d = 0 correspond to treatment A and B, respectively.

The utility of choosing a sample size n, observing a sample mean x̄, and
taking the post-trial decision d, given that θ is the true incremental efficacy, is
taken to be the aggregated, incremental efficacy for both in-trial and post-trial
patients:

u(n, d, x̄, θ) =
nx̄

2
+ d(N − n)θ.

It follows that the induced utility of choosing n, observing x̄ and subsequently
selecting a treatment option d is

ū(n, d, x̄) = E

[nx̄

2
+ d(N − n)θ

∣

∣

∣
n, x̄

]

=
nx̄

2
+ d(N − n)

(

nx̄

n0 + n

)

.

Maximising over d ∈ {0, 1} gives

ū∗(n, x̄) =
nx̄

2
+

(N − n)n

n0 + n
max (0, x̄) .

The prior predictive distribution for X̄ is given by X̄ ∼ N
(

0, 4σ2/n0 + 4σ2/n
)

.
This implies that3

E
[

max
(

0, X̄
)
∣

∣n
]

=
1√
2π

√

4σ2

(

1

n0
+

1

n

)

.

3It is straightforward to show that if Y is a random variable distributed as Y ∼ N
(

0, σ2

Y

)

,

then E [max(0, Y )] = σY /
√
2π.
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It follows that

ũ(n) =
(N − n)n

n0 + n
E
[

max
(

0, X̄
)∣

∣n
]

=
N − n√

2π

√

4σ2

n0

√

n

n0 + n
.

Maximisation of this function gives

n∗ =
n0

4

(

√

9 +
8N

n0
− 3

)

,

which in turn leads to the asymptotic result

n∗ ∼
√

n0

2

√
N, N → ∞.

A recent contribution by Stallard et al. (2017) contains a detailed analysis of
a generalised version of the example considered in this section. They show
that the optimal sample size is O(

√
N) as N → ∞, under the assumptions

that the distribution for the primary endpoint has a one-parameter exponential
family form and that the utility for each patient is a continuous function of the
parameter. In addition to the result for a fixed value of N , they also extend
the asymptotic analysis to the case in which N is unknown and has a geometric
distribution.



Chapter 3

Optimal stopping problems

in continuous time

Paper IV stands out from the other three since the analysis of Anscombe’s
problem requires results from the theory of optimal stopping for continuous-
time Markov processes. In order to make this thesis a bit more self-contained,
this chapter therefore provides a very brief review of the basic concepts.

3.1 Markov processes and optimal stopping

The material in this section is mostly based on the more comprehensive intro-
duction given in Christensen (2016). A filtered probability space (Ω,F ,P, (Ft)t≥0)
consists of a sample space Ω (with outcomes ω ∈ Ω), a σ-algebra F of subsets
of Ω that is interpreted as the set of events, a probability measure P : F → [0, 1]
satisfying Kolmogorov’s axioms and a filtration (Ft)t≥0 of σ-algebras satisfying
Ft1 ⊆ Ft2 ⊆ F for all t1 ≤ t2. A continuous-time process (Xt)t≥0 is defined
as a collection of random variables Xt : Ω → E ⊆ Rn, indexed by the time
parameter t. The state space of the process is the pair (E,B(E)), where B(E)
is the Borel σ-algebra of E.

The dynamics for many kinds of processes (e.g., diffusion or Markov pro-
cesses) are determined by the starting state x, an element in E such that
P(X0 = x) = 1. It is then of interest to consider the entire family of processes
(Xx

t ) corresponding to a set of such starting states. However, it is often more
convenient to consider a single process (Xt) and handle the different starting
states by introducing a family of probability measures Px that conditions the
process to start in x. Formally, we then have Px ((Xt) ∈ ·) = P ((Xx

t ) ∈ ·). The

17
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process (Xt) is said to be adapted to the filtration (Ft)t≥0 if Xt is a (Ft,B(E))-
measurable function for each t ≥ 0.

We are now ready to define the central concepts of stopping time andMarkov
process.

Definition 3.1.1 (Stopping time): A random variable τ : Ω → [0,∞] is a
stopping time with respect to the filtration (Ft)t≥0 if the event {τ ≤ t} ∈ Ft

for all t ≥ 0.

Definition 3.1.2 ((Strong) Markov process): (Xt)t≥0 is called a time-homogeneous
Markov process on (Ω,F , (P)x∈E , (Ft)t≥0) if

1. The function x 7→ Px(Xt ∈ B) is measurable for all t ≥ 0 and B ∈ B(E).

2. For all ω ∈ Ω and t > 0, there exists ω′ ∈ Ω such that Xt+s(ω) = Xs(ω
′)

for all s ≥ 0.

3. Px(X0 = x) = 1 for all x ∈ E.

4. For all s, t ≥ 0, x ∈ E and B ∈ B(E), we have

Px (Xt+s ∈ B | Ft) = PXt
(Xs ∈ B), Px almost surely.

If, in addition, we have

Px (Xτ+s ∈ B | Fτ ) = PXτ
(Xs ∈ B), Px almost surely on {τ < ∞},

for all s ≥ 0, B ∈ B(E) and stopping times τ , then (Xt) is a strong Markov
process. It is property 4 that is most important in this definition. It may
be interpreted as stating that the future of a Markov process from time t and
onwards only depends on the state x at time t, and not on the entire history up
to time t.

Let G : E → R be a measurable function such that

Ex

[

sup
t≥0

|G(Xt)|
]

< ∞, for all x ∈ E. (3.1)

This function G is referred to as the reward function of an optimal stopping
problem. Having introduced an appropriate set of stopping times T , the value
function is defined as

V (x) = sup
τ∈T

Ex [G(Xτ )] . (3.2)

The right hand side above essentially defines the optimal stopping problem.
To solve the problem, we have to find the value function V (x) and an optimal
stopping time τ∗ ∈ T satisfying

V (x) = Ex [G(Xτ∗)] , for all x ∈ E.
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Eq. (3.1) ensures that the value function V (x) is well-defined for all x ∈ E.
Moreover, since τ = 0 is a finite stopping time, it must satisfy

V (x) ≥ Ex [G(X0)] = G(x), for all x ∈ E.

The assumption that we are working with Markov processes can be exploited
when searching for an optimal stopping time. For suppose that we have observed
a path of the process corresponding to a specific outcome ω until t > 0. If we
have not stopped so far and if Xt(ω) = X0(ω), then since (Xt) is a Markov
process we are at time t faced with the same optimal stopping problem that
we were at time 0. Hence, if it was optimal not to stop at time 0, we should
not stop at time t either. We can conclude that the decision of whether to stop
(and get the reward G(Xt)) should only be based on the current state of the
process at time t, not on the whole path up to this time point. This heuristic
argument motivates the following definitions.

Definition 3.1.3 (Stopping region and continuation region): Let

Stopping region = {x ∈ E : V (x) = G(x)},
continuation region = {x ∈ E : V (x) > G(x)}.

The problem has been reduced to finding a way to characterise the stopping
region. If this can be done, an optimal stopping time consists of observing the
process until Xt = x for some state x in the stopping region.

In Paper IV, we are mostly interested in applying the theory briefly reviewed
here to problems with finite time horizons, in which the allowed stopping times
are those which satisfy 0 ≤ τ ≤ T for some constant T . Moreover, the reward
function will depend on the current time t. This generalisation leads to no great
difficulties, since we may consider the time-space process (t,Xt), which is again
Markov provided that (Xt) is. The value function is in this case defined as

V (t, x) = sup
0≤τ≤T−t

E(t,x) [G(t+ τ,Xt+τ )] , t ∈ [0, T ], x ∈ E.

3.2 Girsanov’s transform

A simple version of this central result that is enough for our purposes is stated
here, based on the formulation given by Øksendal (2003, Theorem 8.6.4).

Theorem 3.2.1: Let Yt ∈ R be an Itô process of the form

dYt = a(t)dt+ dWt, 0 ≤ t ≤ T, Y0 = 0,
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where a(t) is a real-valued function and (Wt) is a standard Brownian motion.
Define a process

Mt = exp

(

−
∫ t

0

a(s) dWs −
1

2

∫ t

0

a2(s) ds

)

, 0 ≤ t ≤ T.

Suppose (Mt) is a martingale with respect to Ft and define the measure Q on
FT by

dQ(ω) = MT (ω)dP(ω).

Then Q is a probability measure on FT and (Yt) becomes a standard Brownian
motion with respect to Q for 0 ≤ t ≤ T .

To illustrate the result, we here apply it to the situation of main interest in
Paper IV.

Example 3.2.1: Suppose the process (Σt) is a diffusion of the form

dΣt = µdt+ σdWt, Σ0 = 0,

where µ ∈ R and σ > 0 are constants. Dividing through by σ yields

d

(

Σt

σ

)

=
(µ

σ

)

dt+ dWt.

An application of Girsanov’s transform therefore implies that (Σt/σ) is standard
Brownian motion with respect to Q, where

dQ = exp

(

−µ

σ
Wt −

1

2

µ2

σ2
t

)

dP.

Since

Σt = µt+ σWt ⇐⇒ Wt =
Σt − µt

σ
,

dQ may also be written as

dQ = exp

(

− µ

σ2
Σt +

1

2

µ2

σ2
t

)

dP.



Chapter 4

Summary of papers

4.1 Paper I: Late-stage pharmaceutical R&D and

pricing policies under two-stage regulation

Paper I investigates R&D incentives for the pharmaceutical industry in the
presence of two exogenous regulatory stages. In Stage 0, a commercial sponsor
deliberates on whether to run a phase 3 trial and, if it decides to go ahead, selects
the sample size of the trial. The trial results in an estimate x of the incremental
effectiveness. Upon trial completion, a RA in charge of granting access to a
market considers the evidence produced by the trial. Approval for marketing
is granted if the sample size is large enough and the new treatment shows
superiority to the current standard alternative at a one-sided level of 2.5%. In
Stage 1, a price is proposed by the sponsor for the new treatment. Combined
with x, this price determines the Incremental Cost-Effectiveness Ratio (ICER)
upon which a HCI bases its reimbursement decision. The optimal policy for the
sponsor over both stages is found using backward induction.

From the perspective of the sponsor, the value of the HCI’s maximum WTP
for a unit increase in effectiveness is uncertain and is modelled using a continuous
random variable W . It is assumed that W belongs to a location-scale family of
random variables, implying that any member can be uniquely characterised in
terms of a pair (m, s), where m is the expected value (or location parameter) of
W and the scale, s, can be considered a measure of how uncertain the sponsor is
about the HCI’s WTP. We identify three ranges for the uncertainty parameter s,
in which increases in uncertainty have different effects. In the low uncertainty
range, increases in s result in lower optimal prices, lower optimal expected
profits and a smaller optimal trial sample size. In the high uncertainty range, the
situation is reversed: greater uncertainty leads to higher prices, higher expected

21



22 Chapter 4. Summary of papers

profits and a larger trial sample size. For intermediate uncertainty, prices are
increasing, expected profits decreasing and sample size decreasing in the degree
of uncertainty. Hence, for the range of intermediate uncertainty, a smaller value
for s benefits the sponsor, the HCI and the patients.

The framework is applied to a recent NICE appraisal of mannitol dry powder
for treating cystic fibrosis. The status of cystic fibrosis as a rare disease means
that the R&D decision could potentially be considered to be a marginal project,
that is, one with a market size that is close to the minimum population size
required for the investment to be deemed profitable. We investigate how the RA
parameters defining the one-sided significance level and the minimum sample
size required for marketing authorisation impact the minimum size of the target
population that the sponsor requires in order to expect a positive profit when
acting optimally.

4.2 Paper II: Optimizing trial designs for tar-

geted therapies

Paper II is concerned with clinical trials in which the efficacy of a treatment is
tested in an overall population and/or in a pre-specified subpopulation defined
by a binary biomarker. Trial optimisation is done from two perspectives, that of
a commercial sponsor and from the viewpoint of a public health decision maker.

For both perspectives, three different types of trial designs are considered.
These are referred to as the classical design, the stratified design and the enrich-
ment design. The classical design makes no use of the biomarker status and only
tests for a treatment effect in the full population. This is done using a standard,
parallel-group trial with equal group sizes. The stratified design also recruits
patients from the full population, but the biomarker status of each patient is
determined and the treatment effect is tested in the full population and in the
subpopulation. This implies that the stratified design may lead to approval in
either the full population or in the subpopulation only, which necessitates an
appropriate control of the FWER. Such control is implemented using the closed
Spiessens-Debois test (Spiessens and Debois, 2010). In the enrichment design,
patients are screened for their biomarker status and only biomarker positive
patients are included in the trial.

The use of the biomarker test in the stratified and enrichment designs implies
that a fixed cost must be paid to develop the screening procedure. Moreover,
a marginal cost must be paid for each patient screened. These biomarker costs
are not present for the classical design. By comparing the optimal expected
utilities for these three design types, the framework allows us to assess when
it is favourable to determine the biomarker status of the patients in a clinical
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trial and when it is actually more efficient to disregard the biomarker and to
proceed with a classical trial design.

The sample size is optimised for each of the three design types. Moreover,
for the stratified design, the two significance levels defining the Spiessens-Debois
test are also optimised. This optimisation is done with respect to a prior that
encodes the pre-trial knowledge about the efficacy of the treatment by means of
a two dimensional distribution on the true effect sizes in the full population and
the subpopulation. The utility functions considered account for the different
costs of the design types as well as the expected benefit when demonstrating
efficacy in the subpopulations.

Examples of trial designs obtained by numerical optimisation are presented
for both perspectives. We find that the optimal type of design depends sensi-
tively on the various parameters of the framework. A parameter of particular
interest is the prevalence of the biomarker positive patients in the total target
population, and we consider its impact in detail.

4.3 Paper III: Optimized adaptive enrichment

designs

In this paper two types of clinical trial designs are optimised. Both may be
referred to as partial enrichment designs, one single-stage and an adaptive,
two-stage generalisation. The setting in which these designs are evaluated is
one in which there is an a priori biological plausibility that the treatment effect
is larger, or only present, in a subgroup defined by a binary biomarker. The
term partial enrichment here refers to the method of adjusting the recruitment
to the trial so that the trial subgroup prevalence differs from the prevalence in
the total population. Hence, there may be over- or underrepresentation of the
subpopulation in the trial. A full enrichment design is a special case of such a
partial enrichment design where only patients from the subgroup are recruited.

Parallel group trials with normally distributed outcomes are assumed. As
in Paper II, the optimisation is performed from the two perspectives of a com-
mercial sponsor and a public health decision maker. The total population F is
divided into a subgroup S and its complement S′. With a subgroup prevalence
λ (assumed known), the treatment effects for F , S and S′ are, respectively,
δF = λδS + (1 − λ)δS′ , δS and δS′ . The trial designs test the hypotheses
HF : δF ≤ 0 and HS : δS ≤ 0, while controlling the FWER at a pre-specified
one-sided level. Although more powerful procedures are available, for simplic-
ity, and since it allows for the utilisation of numerical integration rather than
simulation, the Bonferroni correction is used to adjust for multiplicity.

A complete specification of the problems in this paper depends on a number
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of different parameters. Priors for effect sizes in the subgroups need to be fixed,
the costs involved must be set to specific values, and the form of the utility func-
tions must be determined before moving on to the optimisation. This leads to a
large space of possible problem configurations. No attempt was made to perform
a systematic numerical investigation of this space. Instead, we focused on a few
specific scenarios while attempting to select realistic values for the parameters.
For these scenarios, a rather detailed analysis is provided, showing the optimal
expected utilities for both perspectives (commercial sponsor vs. public health)
as well as the optimal trial sample sizes for the different designs. Our results
suggest that partial enrichment designs can lead to substantial improvements
of the expected utilities in some situations.

4.4 Paper IV: Anscombe’s model for sequential

clinical trials revisited

The basic objective in this paper is to find the optimal sequential procedure for
testing a new treatment A, and, subsequently, choosing either A or a standard
alternative B. The goal is to maximise the expected utility for a finite pop-
ulation of size N , which includes both the patients recruited to the trial and
the ones that are subsequently given the selected treatment once the trial is
complete. In contrast to the more applied settings of Paper II and Paper III,
we here wish to focus on the mathematical aspects of such a model. Hence, the
model obtained is intentionally very simple. For example, it assumes that there
are no trial costs and that the treatments are indistinguishable in terms of side
effects. It has been studied in numerous other works in the literature since it
was first formalised by Anscombe. Therefore, our aim in this article is not only
to apply the modern optimal stopping theory to this well-known problem, but
to also consider a number of generalisations.

The first generalisation allows for a prior on the incremental effect size that
is not conjugate normal. A very important first step in handling the problem
for such a general prior is to first apply Girsanov’s transform to the sum process
that equals the total utility for all patients in the trial up to time point t. The
second generalisation breaks the symmetry between the two treatments. The
current standard B is assumed to be used in parallel with the ongoing trial,
so that there are always more patients treated with this alternative as time
goes. This changes the optimal stopping rule, and, in particular, we are able to
generalise certain asymptotic result for the optimal stopping rule in the limit
case of a vague prior and a large patient horizon. The third extension of the
model considers the possibility that the patient horizon N is unknown, and
hence must be modeled as a random variable instead of a known constant. It
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turns out that certain specific distributional assumptions for N allows for an
explicit solution for the optimal stopping rule.

The most fundamental assumption in the model is that the response vari-
ables are normally distributed. This makes it possible to reformulate the prob-
lem as a Markovian optimal stopping problem in continuous time. The numer-
ical solution of this latter problem, which proceeds by solving certain integral
equations that follows from the free-boundary approach, then provides an ap-
proximation to the original discrete time problem (over patients 1, . . . , N). This
is a crucial step, because although the discrete time problem can in principle be
solved using backwards induction, in practice this method becomes intractable
as N grows.

The stopping rule derived is optimal from the perspective of a decision maker
that is (1) able to perform a fully sequential trial, and (2) is only concerned with
the public health aspects of the trial (i.e., that disregards any trial costs). This
does not reflect the typical situation in drug development, where a commercial
sponsor performs a trial and then submits the trial data to a regulator, which
in turn decides on market approval. Nevertheless, we demonstrate that the
solution obtained for the idealised model can be used to argue that the clas-
sical evaluation rule of comparing the p-value with a fixed significance level is
suboptimal in certain situations.





Chapter 5

Optimal regulation of

clinical trials

A pharmaceutical company optimises a trial relative to the environment shaped
by the regulatory rules for acceptance of new drugs, together with the struc-
ture in place for monetary reimbursement. In this section, we’ll refer to all
these rules that in the end determine the profit for the company as the market
environment. As discussed in Section 1.2, the market environment, and the dif-
ferent stakeholders involved in it, varies between different countries. However,
in order to simplify the treatment of this topic, we will in this chapter assume
that all governmental bodies (RA, HCI, etc.) are lumped together in a single
entity. Following the game-theoretic literature, we will refer to this entity as
the principal, and the pharmaceutical company will be called the agent. It is
assumed that the principal’s objective is to maximise the health gain of the pa-
tients in a certain population, say all patients afflicted with a certain disease or
all patients within a certain country. For the principal, then, the basic question
is: what is the optimal market environment? In other words, which incentives
should be put in place in order to maximise the health gain of the target patient
population over time, given that basic research and subsequent clinical trials are
performed by profit seeking agents?

The central part of the models below is that the agent performs a phase 3,
confirmatory trial that results in an estimate X of the true mean population
effect Θ. For simplicity, safety issues are ignored. Letting N denote the size of
the target population, not including the subjects enrolled in the trial, it follows
that the total expected incremental health effect if the treatment is approved is
NΘ. We assume throughout that the sample size for the trial is fixed, so that
the only decision that the agent makes is whether or not to perform the trial.

27
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Before the trial, the mean effect Θ is unknown to the principal. This uncertainty
is described by a prior density fΘ. However, we will assume that the agent is
much better informed and actually knows Θ when deciding on whether or not
to go ahead with the trial.

5.1 Basic skeleton model

First, we’ll define a basic decision procedure. The two specific models that will
be solved in the following sections are both obtained as modifications of this
procedure.

Step 1 The principal chooses an incentive structure (a(x), t(x)). a : R → {0, 1}
maps the observed effect estimate x into a binary decision, where a(x) = 1
means that the new drug is distributed to the patient population and
a(x) = 0 means that it is not. t : R → R defines a monetary transfer from
the principal to the agent based on the estimate x.

Step 2 Knowing Θ, the agent decides whether or not to perform a trial. The
decision is a function d : R → {0, 1}, where d(θ) corresponds to a GO
decision and d(θ) = 0 to a NO GO decision. The trial cost is denoted by
K.

If the agent makes a NO GO decision in Step 2, then neither the agent nor the
principal will make any gain. If d(θ) = 1, then the agent pays K to perform the
trial and obtains a monetary reward t(X). The utility for the principal equals
the difference between γNΘ and the payment t(X) to the agent, where γ is
a fixed multiplier which defines the monetary value that the regulator places
on one additional unit of health. Hence, the utilities for the two actors in this
model are

UP = d(Θ) (a(X)γNΘ− t(X)) , for the principal,

UA = d(Θ) (t(X)−K) , for the agent.

Our general approach for solving models of this form proceeds as follows.
First, we solve the decision problem for the agent for each fixed configuration
of incentives, assuming it to be a rational expected utility maximiser. This will
lead to a plan of actions and a corresponding optimal utility for the agent, both
of which are functions of the incentives. Each such agent plan will determine an
expected utility for the principal. In the second step, we search for the optimal
incentives in some appropriate space, assuming that the agent always responds
optimally according to the plan the was found in the first step.

Of course, the solution method just described is nothing else than backward
induction, applied to a sequential game involving two players. It leads to a
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Bayesian equilibrium, in which each strategy is an optimal response to the other.
Let’s illustrate this approach by applying it to the basic skeleton problem. In
doing so, we make the following simplifying assumptions,

Perfect trial The trial is assumed to be so large that the remaining uncertainty
regarding Θ after it is concluded may be neglected. Hence, X = Θ after
the trial.

Known trial cost K is assumed known to both the principal and the agent.

The first step is to find the optimal d for the agent, given a fixed incentive
structure (a, t). Since a perfect trial is assumed,

E [UA | Θ = θ] = d(θ) (t(θ)−K) =⇒ d∗(θ) = I {t(θ) ≥ K} ,

where I denotes the indicator function. Assuming an optimal response by the
agent, the perfect trial assumption implies that the principal’s problem is

max
(a,t)

E [d∗(Θ) (a(X)γNΘ− t(X))] ,

where

E [d∗(Θ) (a(X)γNΘ− t(X))] =

∫ ∞

−∞

I {t(θ) ≥ K} (a(θ)γNθ − t(θ)) fΘ(θ) dθ.

It is immediately checked that the optimal incentives are given by

a∗(x) = I {x ≥ 0} , t∗(x) = KI

{

x ≥ K

γN

}

,

implying a corresponding optimal expected utility of

E[UP ] =

∫ ∞

−∞

(γNθ −K)
+
fΘ(θ) dθ.

5.2 Model with pre-clinical investments

In this section, we assume that the size of the payment to the agent not only
affects its willingness to go ahead with a trial, but also its willingness to invest in
pre-clinical research. As before, we assume that the effect of the new treatment
follows a density fΘ(θ). In the present model, this density is interpreted as
arising from the frequency distribution of a stream of potential new drugs.
When a new drug is discovered in the pre-clinical phase, the agent learns the
true value of Θ and decides on whether or not to perform a perfect trial in order
to obtain market approval.
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The model differs in two important ways from the basic one. First, the agent
can affect the probability that pre-clinical research leads to a drug discovery by
adjusting an investment level I ≥ 0. Second, instead of a general transfer
function t(x), we assume that payment must be proportional to the effect size
demonstrated in the trial. We refer to the constant of proportionality as the
WTP of the principal, and aim to find the optimal WTP level. Specifically, the
decision process consists of

Step 1 The principal chooses an incentive structure (a(x), λ). λ > 0 is inter-
preted as the payment per unit of incremental health per treated patient.

Step 2 Not yet knowing Θ, the agent decides on a level of investment I ≥ 0.
With probability p(I), there is a discovery of a new drug candidate. Let
B be a binary random variable, with B = 1 and B = 0 corresponding to
discovery and no discovery, respectively.

Step 3 Having learned the true value of Θ, the agent decides whether or not
to perform a trial.

Since it is a probability, the function p must always satisfy 0 ≤ p(I) ≤ 1. In
addition, we make the following assumptions:

p(0) = 0, p′(I) > 0, p′′(I) < 0.

The utilities for the principal and the agent are defined as

UP = Bd(Θ)(a(X)γNΘ− λNX),

UA = Bd(Θ)(λNX −K)− I.

As for the basic skeleton model, γ is a factor that converts health units into
monetary units.

Before finding the WTP that maximises E[UP ], the optimal response of the
agent for each specific value of λ must be found. Given that the investment
made in Step 2 leads to a discovery of a new drug with effect θ, it is evident
from the form of UA that

d∗(θ) = I

{

θ ≥ K

λN

}

.

Hence, the expected agent utility of making the investment I and then continue
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optimally is

E [UA | I, d∗] = p(I)

∫ ∞

K/(λN)

(λNθ −K)fΘ(θ) dθ − I

= p(I)

(

λNg2

(

K

λN

)

−Kg1

(

K

λN

))

− I,

g1(z) ≡
∫ ∞

z

fΘ(θ) dθ, g2(z) ≡
∫ ∞

z

θfΘ(θ) dθ.

In Step 2, the agent’s optimisation problem is maxI≥0 E [UA | I, d∗]. Since the
derivative of E [UA | I, d∗] with respect to I is given by

∂

∂I
E [UA | I, d∗] = p′(I)

(

λNg2

(

K

λN

)

−Kg1

(

K

λN

))

− 1,

and since we have assumed that p′′(I) < 0, it follows immediately that there
are only two cases to consider. If p′(0) is sufficiently small, then it is optimal to
choose I = 0. Otherwise, the unique optimal solution is given by the first order
necessary condition for the maximisation problem. Specifically,

I∗(λ,N,K) = 0, if p′(0) ≤ 1

λNg2
(

K
λN

)

−Kg1
(

K
λN

) ,

and otherwise, I∗(λ,N,K) is defined implicitly by the equation

p(I∗) =
1

λNg2
(

K
λN

)

−Kg1
(

K
λN

) .

Next, consider the selection of the optimal WTP λ and function a(x) of the
principal. Assuming an optimal response by the agent, the expected utility is
given by

E [UP | λ, a] = p(I∗(λ,N,K))

∫ ∞

−∞

d∗(θ)(a(θ)γNθ − λNθ)fΘ(θ) dθ.

Clearly, a∗(x) = I{x ≥ 0}, which implies

E [UP | λ, a∗] = p(I∗(λ,N,K))(γ − λ)Ng2

(

K

λN

)

.

Since

E [UP | λ = 0, a∗] = E [UP | λ = γ, a∗] = 0, and E [UP | λ, a∗] < 0 for λ > γ,
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the principal’s optimisation problem is reduced to

max
0≤λ≤γ

{

p(I∗(λ,N,K))(γ − λ)Ng2

(

K

λN

)}

.

Existence of a solution is guaranteed, since a continuous function is maximised
over a finite interval.

In order to illustrate a possible form of the solution to the model, we now
consider a very simple numerical example. It is assumed that

Θ ∼ N (0, 1), p(I) = 1− e−I , K = 1, γ = 10.

That Θ is standard normal implies that g1(z) = 1−Φ(z) and g2(z) = φ(z). The
simple form assumed for p(I) implies that an explicit expression is immediately
obtained for the agent’s optimal investment,

I∗(λ,N,K) =

{

0, g2
(

K
λN

)

/g1
(

K
λN

)

≤ K
λN ,

ln
(

λNg2
(

K
λN

)

−Kg1
(

K
λN

))

, g2
(

K
λN

)

/g1
(

K
λN

)

> K
λN .

Figure 5.1 shows I∗(λ,N = 1,K = 1) and the agent’s corresponding expected
utility as a function of λ. Figure 5.2 shows the principal’s optimal WTP as a
function of population size, together with the optimal investment level and the
corresponding optimal utilities for the agent and the principal.

5.3 Model with unknown trial cost

In this section, another generalisation of the basic model is investigated. The
assumption of a pre-clinical investment is dropped. Now, however, it is assumed
that the trial cost K > 0 is only known to the agent. Because the principal is
uncertain about its value, it uses a distribution FK , with corresponding density
fK . As before, the value of the true effect Θ is also unknown to the principal.
It is assumed that K and Θ are independent from the principal’s viewpoint,
so that the joint density may be written as fK(k)fΘ(θ). Further, instead of
assuming a payment proportional to the perfect trial estimate X of the effect
Θ, we consider arbitrary payment functions t(x). The main interest now lies
in determining how the principal’s uncertainty regarding the trial cost impacts
the optimal form of the payment.

Since E[UA | Θ = θ,K = k] = d(θ, k)(t(θ) − k), the agent’s optimal GO
/ NO GO decision is d∗(θ, k) = I {t(θ) ≥ k}. Hence, the principal’s expected
utility is

E[UP ] = E [I {t(Θ) ≥ K} (a(Θ)γNΘ− t(Θ))] ,
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Figure 5.1: I∗(λ,N = 1,K = 1) with corresponding E[UA].
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Figure 5.2: λ∗(N) and I∗(λ∗, N,K = 1), with corresponding E[UP ] and E[UA].



34 Chapter 5. Optimal regulation of clinical trials

where the expectation is taken with respect to the joint distribution of Θ and K.
The independence of Θ and K implies that E[UP ] may be rewritten according
to

E[UP ] = E
[

(a(Θ)γNΘ− t(Θ))E [I {t(Θ) ≥ K} | Θ]
]

= E
[

(a(Θ)γNΘ− t(Θ))P (t(Θ) ≥ K | Θ)
]

= E
[

(a(Θ)γNΘ− t(Θ))FK (t(Θ))
]

.

It is immediately clear that a∗(x) = I {x ≥ 0}, and the problem for the principal
has thus been reduced to

max
t(θ)∈C

E
[

(γNΘ+ − t(Θ))FK (t(Θ))
]

,

where C is some suitable space of functions.
Since E [UP ] is a one-dimensional integral over θ with respect to the density

fΘ, the maximisation problem boils down to finding the value t = t(θ) which
maximises

(γNθ+ − t)FK(t), θ ∈ R such that fΘ(θ) > 0.

Clearly, if θ ≤ 0, t(θ) = 0 is an optimal choice. For θ > 0, there exists an
optimal t(θ) ∈ (0, γNθ). Uniqueness depends on the precise form of the distri-
bution assumed for K. However, with sufficient regularity, each such optimal
payment must satisfy the first order condition

−FK(t) + (γNθ − t)F ′
K(t) = 0 ⇐⇒ γNθ = t+

FK(t)

F ′
K(t)

. (5.1)

As an example, consider the case when K ∼ Log-Normal(µ = 0, σ2 = 1).
Then

FK(t) = Φ

(

ln t− µ

σ

)

, F ′
K(t) =

1

σt
φ

(

ln t− µ

σ

)

.

Figure 5.3 shows t∗(x) when γN = 1. Note that, by Eq. (5.1), the optimal
payment for any combination of values for γ, N and θ can be read from this
curve.

5.4 Further work on optimal regulation

There are a number of quite obvious extensions that could be made to the basic
skeleton model. Clearly, we would like to drop the unrealistic assumption of a
perfect trial and introduce a sample distribution for the trial estimate X that
depends on Θ. Further, even if it seems reasonable to assume that the agent
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Figure 5.3: t∗(x) for K ∼ Log-Normal(µ = 0, σ2 = 1) and γN = 1.
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might be better informed about Θ before the trial begins, this knowledge is
hardly perfect. Hence, we would like to include an agent prior for Θ that might
be different from the prior fΘ used by the principal. While the issue of sample
size selection permeates the rest of the thesis, it is missing in the simple models
above, and the inclusion of such a choice for the agent seems both natural and
interesting. Safety was also ignored, and might be included by letting the trial
response be multivariate. Perhaps one of the most interesting extensions would
be to generalise the trial design optimised by the agent to allow for an adaptive
phase 3 trial, or to include earlier phases in a sequential optimisation.

The simple models covered here is just a first step towards an adequate
framework for solving optimal regulation problems in the area of clinical tri-
als. They are examples drawn from a number of different model variants that
have been investigated to various extent during the last year of my thesis work.
However, I decided to include them here since I believe that they are enough
to demonstrate that the basic method of solving a game with two actors us-
ing backward induction can be a workable approach to the optimal regulation
problem. Moreover, even these primitive models lead to some interesting con-
clusions. The model in Section 5.2 showed that, if a component describing
pre-clinical investments is included, then it is suboptimal for the principal to
use the same WTP level for all population sizes. That is, even if society values
each individual QALY the same, the optimal regulatory scheme is to pay more
for rare diseases. The model in Section 5.3 showed that, if the principal is un-
certain about the trial cost, then it is not optimal to pay the agent in proportion
to the trial estimate X.

Formally, the basic model framework analysed can be classified as a Bayesian
game (see, e.g., Fudenberg and Tirole (1991) or Myerson (1997)). More pre-
cisely, it belongs to a specialised class of game-theoretic problems known as
principal-agent problems. A comprehensive account of the principal-agent ap-
proach is provided by Laffont and Martimort (2002). This theory has been
widely applied in different areas of economics, including the general problem of
regulation. However, there seems to be relatively little published literature on
specific applications to optimal regulation of clinical trials.
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Discussion

To what extent are Bayesian methods used in practice? Based on a literature
review, Lee and Chu (2012) note that the frequentist design paradigm has dom-
inated the field since the first modern trials started in the 1940’s. They mention
two main barriers associated with the Bayesian approach. The first is the of-
ten demanding computations required, and the second is the use of subjective
information for the construction of priors. The computational challenge essen-
tially restricted application to trials in which conjugate models could be used.
However, the situation has been improved due to the invention of Markov Chain
Monte Carlo (MCMC) methods and the present widespread availability of high-
speed computers. Very few applications of Bayesian design methods were found
before 1995. After this date, the number of trials in which Bayesian methods
were used have been steadily increasing (with 74 applications in 2005-2011).
Few of these, however, applied the full decision-theoretic approach. While there
is a growing trend in the application of Bayesian methods, they are still only
used in a small fraction of all trials performed.

Even if the BDT approach is not widely applied in practice, there are nu-
merous earlier contributions in the literature that apply it to various theoretical
clinical trial models. A classical, detailed account of the BDT approach is given
by Raiffa and Schlaifer (1961). A shorter introduction to the methodology can
be found in Lindley (1997), where a sample size selection problem is analysed.
Gittins and Pezeshk (2000) discuss an approach that they refer to as “Behav-
ioral Bayes”. A pharmaceutical company performs the optimisation, while the
actions of the other stakeholders involved, the regulator and the potential users
of the treatment, are derived by making direct assumptions regarding their be-
haviour. In this sense, the model is very similar to the ones analysed in papers
II and III. The major difference is that the behaviour of the regulator is not as-
sumed to be based on traditional frequentist rules, but instead what the authors

37
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believe are plausible assumptions about the likely decisions. It is stated that
this fully Bayesian methodology was first introduced by Grundy et al. (1956).

Another BDT application is given by Stallard (1998). He considers the
problem of phase 2 sample size optimisation, for both fixed size studies and
sequential trials. The optimisation takes place from a commercial sponsor’s
perspective. The trial response is assumed to be binary, so that the outcome
for each patient is either success or failure of the treatment tested. A result is
given that is similar to the continuation region dynamics of Paper IV; letting
sni

be the number of successes given that ni responses have been observed up
to stage i, there exist boundary functions c(i) and d(i) such that it is optimal to
stop for futility if sni

< c(i), to proceed to phase 3 if sni
≥ d(i), and to continue

the phase 2 trial otherwise. Backward induction is used to solve the problem.

In the papers included in this thesis, the statistical model was based on the
normal distribution. This particular choice can be motivated by the central
limit theorem and it often greatly simplifies the expected utility computation
for a given design. If a normal sample distribution is not appropriate, then some
other candidate must be found in the vast space of available statistical models.
The choice made will determine how difficult the resulting optimisation problem
will be. Sometimes, long-term experience may suggest that some particular
distribution is a good choice. In other cases the process of finding a good
statistical model may require substantial work. However, in this respect the
BDT method is not different from any other approach involving statistics, such
as, for example, the classical frequentist method. Therefore, we turn to the two
features that makes the BDT framework stand out from other approaches to
clinical trial design, the prior and the utility function.

The prime decision problem studied in this thesis is that of designing a phase
3 trial. For such trials, one would like to be able to form a prior by combining
the data obtained from previous phases with any information derived from pre-
clinical studies. This can be challenging since the form of the phase 3 study
may be different from earlier trials. Moreover, even if pre-clinical evidence
provides a substantial amount of information about a given drug, there may be
no obvious way of converting it into a probability distribution for the parameters
of the phase 3 model. Because of this, the choice of prior will often be quite
subjective. This subjectivity is often criticised on the grounds that results from
a scientific study should be of an objective nature, and should be influenced as
little as possible by anything else than the actual trial data.

One solution that has been suggested in the literature is to use so called
objective or reference prior distributions. See, for example, Bernardo and Smith
(1994, Section 5.4) for an extensive discussion of the concept. Such distributions
are defined so as to have a minimal effect on the final analysis, relative to the
data. From the perspective of a RA or HCI in the process of reviewing the
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results of a confirmatory trial, the use of such priors seems like a reasonable
alternative. However, if we are concerned with clinical trial design, rather than
analysis, then restricting the choice to the class of reference priors would be
paramount to throwing away information that could have been used to optimise
the design. My view is that the subjectivity issue is best resolved at the design
stage by carefully motivating the form of the prior leading to the optimal design,
and, in addition, to study the impact on the solution when perturbing the prior
in various ways. Once the design has been fixed and the data collected, any
prior can, in principle, be mapped uniquely to a corresponding posterior.

In general, the utility function of a BDT model has a big impact on whether
or not a given design is optimal. This point has been made at several places
in this thesis, and the issue was explored in some detail in papers II and III
where separate utility functions were studied depending on whether or not the
trial designer is a commercial sponsor or a public health decision maker. The
problem of choosing an appropriate utility function is similar to the problem
of subjectivity involved in the choice of prior. Once the choice has been, max-
imisation of expected value yields an optimal design. However, this design is
only relevant to decision makers that accepts the utility specification. Hence,
if BDT is used to derive an optimal design for a specific, real-world trial, then
a comprehensive recommendation on trial design should include an analysis of
the effect of different perturbations of the utility function used.

To solve the decision problems in papers I, II and III, backward induction
combined with numerical integration was used. In Paper IV, optimal stopping
theory led to an integral equation that could be solved numerically. Common
to all these problems is that the form of the numerical computations depended
heavily on the model specifics. An alternative route is to set up a simulation
framework for estimating the expected utility for a given design, and then search
for the optimal design directly. A major benefit of simulating the trial results
is that the statistical model can easily be changed, that is, the same numerical
method can be used to explore a much larger space of possible statistical mod-
els. Whether or not the simulation approach is feasible for solving multi-stage
problems will of course depend on the number of stages involved. With too
many stages, the variance (due to simulation) of the expected utility estimates
might make the following optimisation result in large errors. Bayar et al. (2016)
investigated the impact of the α-level (one-sided type I error) and the sample
size in a simulation study. A sequence of trials, with the same, fixed design
parameters, were simulated over a 15-year period. They were able to conclude
that, on average, performing a series of smaller trials with relaxed α-levels (as
compared to the traditional 2.5% level) in some scenarios lead to larger survival
benefits over a long research horizon. Since traditionally sized trials typically
require a large number of patients for moderate effect sizes, this insight is par-
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ticularly important in the area of rare diseases. From the perspective of this
thesis, it would be interesting to pursue a similar simulation approach while
allowing for multiple hypothesis testing and adaptive, multi-stage trials.

None of the papers included in this thesis presents a full analysis of the
optimal regulation problem. However, it should be possible to generalise the
models in papers I, II, and III by assuming that the RA and/or the HCI can
choose some of the parameters of the sponsor’s decision problem. We would then
arrive at a framework similar to the one presented in Chapter 5. An example
along these lines is analysed by Miller and Burman (2018). Their framework
includes both phase 2 and phase 3 of the drug approval process. In phase 2, the
sponsor selects a sample size n2 and a threshold, corresponding to a significance
level α2, where the latter determines a threshold for progressing to phase 3. The
regulator selects a significance level α3 in phase 3 which determines if the new
drug receives market authorisation. They solve this model in two steps. First,
the optimal pair (n∗

2, α
∗
2) is found by maximising the sponsor’s expected utility

for each admissible regulator choice of α3. Then, society’s utility is optimised
by the regulator, under the assumption that the sponsor responds optimally to
each candidate value α3. Results are given for a number of different numerical
examples. These indicate that sponsors are more restrictive in starting phase
3 if trial costs increases, the regulator requires stronger evidence for approval,
or the market potential decreases (for example, due to a smaller target patient
population). Importantly, they note that it will not be optimal for society to
use a fixed type I error α3 for all trial situations. In particular, the burden of
evidence should typically be relaxed for rare diseases. On a qualitative level,
this is the same result as that derived from Anscombe’s fully sequential model
in Paper IV, even though the decision process analysed by Miller and Burman
(2018) is quite different.

An important aspect of the regulation of drug research is the pricing mech-
anism. If it is too strict, then there will be insufficient investments in basic
research by the industry. On the other hand, high prices becomes a burden
on the public health system, and may restrict access to consumers in markets
dominated by private HCI’s. This trade-off is sometimes referred to as that
between static efficiency, which means ensuring access to the innovation, and
dynamic efficiency, which means incentivising innovation in the future. Most of
the literature has focused on analysing static efficiency rather than its dynamic
counterpart. Babar (2015, Chapter 21) provides an introduction to the ideas
behind some different pricing policies and reviews some of the recent contribu-
tions to the literature on innovation incentives for the pharmaceutical industry.
In connection with a discussion on value based pricing, which here means pay-
ment to a commercial sponsor proportional to the estimated effect, it is noted
that using the same constant of proportionality for all reimbursement decisions
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can be problematic. Such a scheme leads to different drugs being granted the
same price, regardless of development costs and market size (i.e., size of the
target population).

Jena and Philipson (2008) provide an analysis of the impact of cost-effectiveness
(CE) rules on static and dynamic efficiency. They argue that CE thresholds are
concerned with maximising consumer surplus at the cost of reduced producer
surplus. As an illustrative example they mention vaccines, which although
they are often very cost-effective lack any appreciable research investment by
producers. Their framework is reminiscent of the regulation model solved in
Section 5.2. In particular, they include a factor in their social welfare function
representing the probability of discovery for a given level of R&D undertaken.
Their aim is not to derive the optimal incentivising mechanism from a public
health perspective, but instead to underline that reimbursement based on cost-
effectiveness is essentially a price control procedure, and hence the well-known
fact that price controls affect both dynamic and static efficiency must be taken
into account if one wants to find, say, an optimal CE threshold.

Levaggi et al. (2017) compares two schemes for regulating drug reimburse-
ment: CE thresholds and risk-sharing agreements. The optimal behaviour of
the firm under these two schemes is derived in a three stage model consisting
of (1) discovery of new drug, (2) development and (3) commercialisation. At
stage 1 and 3, the effectiveness of the new drug is modeled using a geometric
Brownian motion. While there is no explicit attempt to define a societal welfare
function and derive the optimal incentivising structure, an extensive discussion
is provided regarding to what extent four different policy goals are achieved.
There has been some concern in the literature that risk-sharing agreements,
which as defined by Levaggi et al. (2017) shifts some of the risk from the HCI
to the company, might disincentivise investments into R&D, as compared to the
more standard CE threshold scheme. However, their results show that this need
not necessarily be the case; it depends on the specifics of the implementation
of the risk-sharing agreement, and the nature of the trade-off between paying
more for new treatments and reducing the time patients have to wait before
approval.

There are many interesting potential extensions for the models analysed in
this thesis. For example, one possibility is to include earlier phases in the models
of papers I, II, and III. Another natural extension is to consider multivariate
outcomes in the trials. Although none of the papers considers safety issues in
any detail, safety endpoints are very important in clinical trials and could be
included as additional variables. On a conceptual level, both extensions are
straightforward, but there will be a limit to the number of stages that can be
handled numerically using backward induction.





Chapter 7

Conclusions

If one accepts the BDT approach as a general method for clinical trial design,
then a natural direction for further work is to investigate more complex models.
The utility function or the statistical model can be made more detailed, and
more stages can be added to achieve a greater flexibility. The main difficulty
associated with such extensions is the complexity of the numerical computations
required when finding the optimal design. Indeed, numerical issues are starting
to become troublesome even in the relatively simple two-stage designs of Paper
III. One possible way forward may be to abandon the goal of finding the optimal
solution via backward induction. For example, it may very well be preferable
to use a suboptimal design allowing for five stages instead of an optimal design
allowing for two. Although this line of research has not been the topic of this
thesis, it is a highly relevant issue. Presumably, the extent to which BDT
methods are used by practicing statisticians is determined by the availability
of efficient and user friendly software that can be used to obtain near-optimal
designs for given priors, statistical models and utility functions.

The main conclusion of Paper I is that the extent of the uncertainty about
the HCI’s willingness to pay for a new treatment can have a major influence
on the decisions made by a commercial sponsor. Although we stop short of
optimising the regulatory rules, the basic model is richer than the principal-
agent setting discussed in Chapter 5, since it includes three stakeholders: a
commercial sponsor, a RA and a HCI. An interesting expansion of this model
would be to introduce utility functions for both the RA and the HCI and then
try to find the optimal regulatory and reimbursement rules by optimising a social
welfare function. This social welfare function would be a linear combination of
the utility function for the three stakeholders in the model.

The comparisons of optimised trial designs in papers II and III reveal that
it is not always optimal to incorporate biomarker testing, even if there is a
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possibility to do so. The form of the optimal design depends on the economics
of the situation, such as trial costs and biomarker screening costs, and the prior
information available. Moreover, these papers show how the utility functions
associated with the two different perspectives, that of a commercial sponsor
and a public health decision maker, will affect the optimality of the designs.
In general, the investigations in these papers show that, since the form of the
optimal trial design depend heavily on both the prior and the utility functions
adopted, it is very important to think carefully about appropriate models for
these before optimisation begins.

Anscombe’s original model was intentionally made as simple as possible. For
example, there are no trial or production costs, the randomisation was assumed
to be perfectly balanced and the patient horizon N was assumed known. How-
ever, we showed that it is possible to make reasonable extensions to this model,
such as including patients given the standard treatment in parallel with the trial
in the utility function, or assuming that N is unknown, while still being able to
obtain solutions. Hence, it may be conjectured that other interesting results can
be obtained by applying modern optimal stopping theory in continuous time to
sequential decision problems similar to Anscombe’s. A particularly interesting
result for this thesis is that Anscombe’s model led to an argument for using a
regulatory rule that is different from the classical one (i.e., frequentist hypoth-
esis testing at a fixed significance level). An example was given that considered
the case of a rare disease (small N) and a small trial, and it was shown that
the solution to Anscombe’s model led to a less conservative level for approving
a new treatment.

The model in Section 5.2 shows that, if pre-clinical investments are included
as a model component, then it follows that it is not optimal to pay the same
for all QALYs, even if they have the same value to the HCI. To some extent,
this model captures the trade-off between static and dynamic efficiency. It is
a simple model, to be sure, but the structure that is present seems reasonable
enough. This indicates that the result may be quite general, and that extended,
more realistic models would lead to a similar conclusion.



Appendix A

Multiple testing procedures

Consider a statistical model in which the probability distribution of a random
variable X is determined by the value of a parameter θ that belongs to some
parameter space T . In this setting, a subset H of T is referred to as a null
hypothesis about the value of θ, and the complement Hc is called the alternative
hypothesis. A test associated with a null hypothesis is then defined using a
binary function t(X) mapping X into a value that determines whether or not
the null hypothesis is rejected.

Given a hypothesis H ⊆ T and an associated test t, the type I error is
defined as the (maximum) probability of falsely rejecting H. Formally,

type I error = sup
θ∈H

Pθ (t(X) rejects H) .

A statistical test is said to control the type I error at the level α if the error is
less than or equal to α. We now generalise this notion of type I error control to
the setting of multiple hypothesis testing.

Let {H1, . . . , Hm} be a family of m ≥ 1 hypotheses. For any value of the
parameter θ, let I(θ) = {i ∈ {1, . . . ,m} | θ ∈ Hi} be the index set corresponding
to all hypotheses containing θ. Any fixed value of θ defines a subset of true
hypotheses, MI(θ) = {Hi | i ∈ I(θ)}, containing mI(θ) = |MI(θ)| elements. In
this setting of multiple hypotheses, a test function t maps an outcome X of the
experiment into a subset of {H1, . . . , Hm}, the elements of which correspond to
the individual hypotheses that are rejected by the test.

Having a fixed test procedure t in mind, let R (an observable random vari-
able) be the total number of hypotheses which are rejected by the test and let
V (an unobservable random variable) be the number of true hypotheses which
are rejected. There are several alternative definitions that may be used when
generalising the type I error rate to the testing of several hypotheses (Bretz
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et al., 2011, Chapter 2). The Per Comparison-Error Rate (PCER) is defined
as the expected number of true hypotheses rejected per comparison,

PCER = Eθ [V ] /m.

The False Discovery Rate (FDR) is defined as the expected proportion of falsely
rejected hypotheses among the rejected hypotheses (V/R is defined as 0 for
R = 0),

FDR = Eθ [V/R | R > 0]Pθ (R > 0) .

The Family-Wise Error Rate (FWER) is defined as the probability that at least
one hypothesis is falsely rejected,

FWER = Pθ (V > 0) .

In the context of confirmatory clinical trials, a common contemporary regulatory
requirement is that the FWER is controlled at a given significance level α (Bretz
et al., 2011, p. 13). This is also the generalisation of type I error to multiple
hypotheses used in this thesis.

A Multiple Testing Procedure (MTP) is said to control the FWER in the
weak sense if the rate is controlled only under the global null hypothesis, which
is defined as the intersection of all null hypotheses in the family. Hence, there
is weak FWER control if

sup
θ∈∩m

i=1
Hi

Pθ (V > 0) ≤ α.

Control of the FWER is said to be strong if the type I error is controlled for
any configuration of true and false hypotheses, which may be expressed as

sup
θ∈∪m

i=1
Hi

Pθ (V > 0) ≤ α.

In many situations of multiple testing, there are natural tests and corre-
sponding unadjusted p-values associated with the individual null hypotheses
Hi, i = 1, . . . ,m, or simple combinations of them. These simple tests are often
used as a basis for the construction of a MTP. An adjusted p-value can then be
associated with each hypothesis, defined in such a way that a direct comparison
with a prescribed FWER is possible. For example, the closed testing principle
(Marcus et al., 1976) can be used to construct a MTP given that tests for re-
jection have been defined for all possible intersection hypotheses HI = ∩i∈IHi,
I ⊆ {1, . . . ,m}. An elementary hypothesis Hi is then rejected by the overall
test (i.e., by the MTP) if HI can be rejected for all I containing i. It can be
shown that, if the tests for the intersections control the error rate at level α,
then so will the overall MTP.
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One of the simplest and most well-known MTP is the Bonferroni procedure,
which may serve to illustrate the general philosophy behind such methods. Sup-
pose that individual tests t1, . . . , tm have been defined for the hypotheses, with
corresponding unadjusted p-values p1, . . . , pm. The Bonferroni procedure is
then implemented by rejecting Hi if pi ≤ α/m, 1 ≤ i ≤ m. That the FWER is
controlled in the strong sense at the level α follows directly by the Bonferroni
inequality, since Pθ (V > 0) may be written as

Pθ

(

∪i∈I(θ) {pi ≤ α/m}
)

≤
∑

i∈I(θ)

Pθ (pi ≤ α/m) ≤ mI(θ)

( α

m

)

≤ α. (A.1)

A.1 The Spiessens-Debois test

Since no distributional assumptions are used in the proof of Eq. (A.1), the
Bonferroni MTP is completely general and may be applied in any situation.
However, this generality comes at a price. More specific procedures that are only
applicable if certain distributional assumptions are placed on the test statistics
often lead to higher power. One such procedure, which is employed in Paper
II, have been proposed by Spiessens and Debois (2010). They refer to it as the
general bivariate normal method.

We now consider the construction of a MTP controlling the FWER in the
strong sense by combining the closed testing principle with the method of
Spiessens and Debois. The context is that of a clinical trial with two analy-
ses, namely, an overall analysis of the efficacy in the total population and a
subgroup analysis which only considers a subset of the population. The two
test statistics corresponding to the overall and subgroup analyses are assumed
to follow a bivariate normal distribution. Let Z1 and Z2 denote the standardised
test statistics used to test the null hypotheses H1 and H2 of a zero treatment
effect in the total population and the subgroup, respectively. It may be shown
(Jennison and Turnbull, 2000) that under H12 = H1 ∩H2,

[

Z1

Z2

]

∼ N
([

0
0

]

,

[

1
√
λ√

λ 1

])

, (A.2)

where λ = IS/IT is the fraction of information1 in the subgroup relative to the
total population.

If H12 is true, then it is unlikely that extreme values will be observed for
Z1 or Z2. Hence, a reasonable test is one which rejects H12 if either Z1 > zα1

or Z2 > zα2
, where zα1

and zα2
are the critical values corresponding to some

significance levels α1 and α2. Suppose that the level α1 is fixed at some specific

1Information is here defined as the reciprocal of the variance of the respective parameter.
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value. Then in order to control the FWER at an overall significance level α,
the other significance level α2 must be chosen in such a way that

Pθ (Z1 > zα1
or Z2 > zα2

) = α, for θ ∈ H12.

Since

Pθ (Z1 > zα1
or Z2 > zα2

) = Pθ (Z1 > zα1
) + Pθ (Z1 ≤ zα1

and Z2 > zα2
)

= α1 + Pθ (Z1 ≤ zα1
and Z2 > zα2

) ,

this is equivalent to finding a value of α2 satisfying

Pθ (Z1 ≤ zα1
and Z2 > zα2

) = α− α1. (A.3)

Using the density in Eq. (A.2), it can be seen that solving Eq. (A.3) is equivalent
to solving

∫ zα1

−∞

Φ

(

zα2
−
√
λz1√

1− λ

)

φ(z1) dx = 1− α. (A.4)

Given a selected value of α1, the solution of Eq. (A.4) provides a value of α2

such that the test which rejects the intersection hypothesis H12 if Z1 > zα1
or

Z2 > zα2
controls the type I error at level α. Clearly, the canonical univariate

tests which reject H1 if Z1 > zα and H2 if Z2 > zα also control the type I error
rate for the rejection of H1 and H2, respectively. Hence, by the closed testing
principle, the following MTP used in Paper II controls the FWER in the strong
sense:

1. Specify values of α and α1.

2. Reject H1 if Z1 > zα (unadjusted rejection of H1) and Z1 > zα1
or

Z2 > zα2
(unadjusted rejection of H12).

3. Reject H2 if Z2 > zα (unadjusted rejection of H2) and Z1 > zα1
or

Z2 > zα2
(unadjusted rejection of H12).
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Some basic tools from

analysis

B.1 The implicit function theorem

In Paper I we are faced with the problem of maximising a certain objective
function (an expected utility) with respect to a price variable. In addition to
the price variable, the objective function also depends on a set of parameters and
it is of interest to analyse how the optimal price depends on these parameters.
The implicit function theorem (see, for example, Rudin (1976, Chapter 9))
is used in Paper I to establish that the optimal price function is continuously
differentiable, given that this holds for the objective function that is maximised.
Moreover, the theorem provides formulas for computing the partial derivatives
of the optimal price function with respect to the parameters. For reference, a
version of the theorem will now be stated.

Let f be a continuously differentiable function mapping points (x, y) ∈ Rn+1

into R and suppose that the point (a, b) = (a1, . . . , an, b) ∈ Rn+1 satisfies
f(a, b) = 0. Then, if (∂f/∂y)(a, b) 6= 0, there exists an open set U contain-
ing a, an open set V containing b, and a unique continuously differentiable
function g : U → V such that the local graph of g, {(x, g(x)) | x ∈ U}, co-
incides with the local level set {(x, y) ∈ U × V | f(x, y) = 0}. Moreover, the
partial derivative of g with respect to the component xi in the point a is given
by

∂g

∂xi
(a) = − ∂f

∂xi
(a, b)

/∂f

∂y
(a, b).
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B.2 The envelope theorem

A general result that is often useful when analysing how changes to parameters
influence the optimised value of an objective function is the envelope theorem
(Varian, 1992, Chapter 27). There are many versions of this theorem, but the
result will only be stated here under rather strong smoothness assumptions.
The theorem is used in Paper I to analyse how the optimal expected utility
responds to changes in various parameters.

Suppose that f is a differentiable function mapping points (x, y) ∈ Rn+1

into R, and consider the maximisation problem

f∗(x) ≡ max
y

f(x, y).

Assume further that the maximising argument y∗(x) is differentiable for x in
some region U of interest and that (x, y∗(x)) corresponds to an interior global
optimum for x ∈ U . The envelope theorem then states that

∂

∂xi
(f∗(x)) =

∂f

∂xi
(x, y)

∣

∣

∣

∣

y=y∗(x)

. (B.1)

Hence, changes in the optimal value of the objective function may be analysed in
terms of partial derivatives of the original objective function. With the stated
assumptions, this result is easily shown. Since f∗(x) = f(x, y∗(x)), the left
hand side of Eq. (B.1) is

∂

∂xi
(f(x, y∗(x))) =

∂f

∂xi
(x, y∗(x)) +

∂f

∂y
(x, y∗(x))

∂y∗

∂xi
(x).

But from the assumptions of differentiability and an interior optimum, (∂y∗/∂xi)(x) =
0 and the result follows.
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