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Considerations in small population groups

= Difficult to run trials with many subjects

= How can all relevant information be
utilized in making decisions?

— Nonlinear mixed effects models (NLMEM)
incorporating drug and disease characteristics
offer an attractive alternative




NLMEM - why attractive?
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= Integrate information in data across
— subjects
— time (longitudinal analysis)
— variables
— covariates/predictors

= Allow prior knowledge to be incorporated
— Drug/Disease driven structural models

— Parameter constraints from
biological/pharmacological knowledge

— Other knowledge/assumptions as appropriate




Trial/treatment decisions using NLMEM (PE

= Informed by
— Model contrasts (hypothesis tests)
— Parameter uncertainty distributions
— Prediction distributions with uncertainty




Decisions using NLMEM - model contrasts
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Figure 3 Power curve comparison between the pharmacometric model-based power (gray triangles) and the t-test based power (black
diamonds), for the proof-of-concept scenario. (a) The power curves for the stroke example in which the difference in study size is a factor of
4.3 (90 vs. 388 total number of patients) is displayed. (b) In the diabetes example, the difference in study size was 8.4-fold (10 vs. 84 total

number of patients) in favor of the pharmacometric approach.

Karlsson et al. CPT:PSP 2:e23 (2013)




Decisions using NLMEM - parameter uncertai

Clarification on Precision Criteria to
Derive Sample Size When Designing

Pediatric Pharmacokinetic Studies
J Clin Pharmacol 2012 52: 1601

Yaning Wang, PhD, Pravin R. Jadhav, PhD, Mallika Lala, PhD,
and Jogarao V. Gobburu, PhD

One of the important goals of the pediatric PK
study is to ensure the precise estimate of important
PK parameters, such as clearance and volume of
distribution, to justify the choice of a safe and effec-
tive dose from a PK perspective. To achieve this
goal, a standard regulatory requirement has been
drafted and communicated to the sponsors, where
applicable, as follows:

The study must be prospectively powered to target a
95% CI [confidence interval] within 60% and 140%
of the geometric mean estimates of clearance and
volume of distribution for DRUG NAME in each
pediatric sub-group with at least 80% power.




Internal decision making -
predictive distributions

Model-Based Drug Development: A Rational
Approach to Efficiently Accelerate Drug
Development

PA Milliganl, M]J Brown2, B Marchant®>!%, SW Martin!, PH van der Graaf*!, N Benson®!!,
G Nucci®, DJ Nichols®, RA Boyd®, JW Mandema’, S Krishnaswami®, S Zwillich®, D Gruben?,
RJ Anziano?, TC Stock® and RL Lalonde®

Total VTE relative risk to enoxaparin

Major bleeding relative risk to enoxaparin
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Figure 6 Observed relative risk of PD 0348292 vs. enoxaparin (symbols with 95% confidence intervals (Cls)) for (a) VTE and (b) MB and logistic regression model
fit (solid line with dark blue area covering the 90% Cl) in an adaptive phase Il study. The light blue area covers the 90% Cl before the trial based on the PK-PD
model for inhibition of thrombin generation. MB, major bleeding; PK-PD, pharmacokinetics—pharmacodynamics; VTE, venous thromboembolism.

Clin Pharmacol Ther 2013




Good Practices in Model-Informed Drug Discovery and
Development: Practice, Application, and Documentation

EFPIA MID3 Workgroup: SF Marshall™, R Burghaus?, V Cosson®, SYA Cheung®, M Chenel®, O DellaPasqua®, N Frey?,
B Hamrén’, L Hamisch', F lvanow®, T Kerbusch®, J Lippert?, PA Milligan', S Rohou™, A Staab', JL Steimer'®, C Tornge' and

SAG Visser'® . CPT Pharmacometrics Syst. Pharmacol. (2016) 5, 93-122;
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Figure 3 MID3: a quantitative framework for prediction and extrapolation centered on knowledge and inference generated from
integrated models of compound, mechanism, and disease level data aimed at improving the quality, efficiency, and cost-effectiveness
of decision-making. The colored boxes represent essential components of the “Learn and Confirm Cycle”. The arrows represent proc-

esses that link these components.



Regulatory decision making - (/}
predictive distributions A

Model-based analyses for pivotal decisions,
with an application to equivalence testing for biosimilars
Bieth et al, PAGE 2012
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NLMEM in trial/treatment evaluations

Power calculations
— How to do timely power calculations?

Hypothesis tests
— How to achieve type 1 error control?

Model uncertainty
— What if the NLMEM is not appropriate?

Adaptive designs for small populations
— NLMEM-Based Adaptive Optimal Design

= Parameter uncertainty (PU)
— Diagnostics for adequacy of PU
— Sampling-Importance-Resampling (SIR)




NLMEM in trial/treatment evaluations -
N

= Power calculations
— How to do timely power calculations?

Pharmacometric model-based power (POC)
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Increased speed in power calculations

3N /
= Y

= Monte Carlo Mapped
Power (MCMP)

= Simulate 1 data set
with large N

= Fit full and reduced
model

= Obtain dOFVi for each
subject

= Resample dOFVi to
obtain power for study
size of interest

= Vong et al., AAPS ]
2012

Parametric Power
Estimation (PPE)

Simulate X data sets
with N subjects

Fit full and reduced
model

Estimate A from dOFV
assuming non-central
chi-square distribution

Extrapolate to other
study sizes using A

Ueckert et al., JPKPD
2016



NLMEM in trial/treatment evaluations

Power calculations
— How to do timely power calculations?

Hypothesis tests
— How to achieve type 1 error control?

Model uncertainty
— What if the NLMEM is not appropriate?

Adaptive designs for small populations
— Model-Based Adaptive Optimal Design

= Parameter uncertainty (PU)
— Diagnostics for adequacy of PU
— Sampling-Importance-Resampling (SIR)




NLMEM - Type 1 error control
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Wahlby U et al., J Pharmacokinet Pharmacodyn 28:231-52 (2001)




Permutation (Randomisation) tests for NLME

= Permutation test for
— prespecified NLMEM model
— (mixture) model built using blinded data

Change in OFV for Randomization Test

Nominal
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Deng et al. PAGE 2015, Harling et al. PAGE 2016,




NLMEM in trial/treatment evaluations

Power calculations
— How to do timely power calculations?

Hypothesis tests
— How to achieve type 1 error control?

= Model uncertainty
— What if the NLMEM is not appropriate?

Adaptive designs for small populations
— Model-Based Adaptive Optimal Design

= Parameter uncertainty (PU)
— Diagnostics for adequacy of PU
— Sampling-Importance-Resampling (SIR)




-
Model-averaging >

= Model-averaging for
— longitudinal dose-response*
— biosimilar superiority testing**
— confidence interval-based QT-test***

*Aoki et al., PAGE 2014, PAGE 2016
**Dosne et al., in manuscript
***Dosne et al, PAGE 2016




NLMEM in treatment evaluations

Power calculations
— How to do timely power calculations?

Hypothesis tests
— How to achieve type 1 error control?

Model uncertainty
— What if the NLMEM is not appropriate?

Adaptive designs for small populations
— Model-Based Adaptive Optimal Design

= Parameter uncertainty (PU)
— Diagnostics for adequacy of PU
— Sampling-Importance-Resampling (SIR)




Model-based adaptive optimal design
S

Simulated model based adaptive optimal design of adult to
children bridging study using FDA stopping criteria
= Interim analysis after every cohort
= Update of design for next cohort
= Stopping if precision is sufficient

+ Design
Scale |
i Conduct Age — Weight
: Dose
+ ; Relationship
Adjust !
Analyze

Stromberg and Hooker. PAGE 2015; Karlsson EMA Workshop 2016




NLMEM in treatment evaluations

Power calculations
— How to do timely power calculations?

Hypothesis tests
— How to achieve type 1 error control?

Model uncertainty
— What if the NLMEM is not appropriate?

Adaptive designs for small populations
— Model-Based Adaptive Optimal Design

Parameter uncertainty (PU)
— Diagnostics for adequacy of PU
— Sampling-Importance-Resampling (SIR)




_
Parameter uncertainty (PU) LAY

= Parameter uncertainty distributions
provide decision basis for probability and
confidence interval (CI)-based decisions

= Several ways to estimate PU
— Cov-matrix, bootstrap, ...

= Different methods provide different PU
and have different properties
— Which one to use?




Parameter uncertainty — covariance matrix (

= Covariance matrix
— Not always retrievable or suitable
— Assumes symmetry & linear correlations

= NLMEM C(ClIs often assymetric
— Non-linear model

— (Interindividual) Variability parameters
— Context-driven parameter boundaries




Parameter uncertainty - bootstrap

« Bootstrap: sensitivity to sample size

 For simple models, robust down to small
sample sizes (N=10-12)

 For NLME models, sample size dependence
less well explored/understood




Bootstrap of NLME models IS

3N /
= Y

« Factors likely to increase sample size
demand

Simultaneous estimation of multiple
parameters

Hierarchical models with =2 levels of random-
effects

Heterogeneous designs including covariate
distributions

Data-driven model development
Model misspecification



dOFV distribution - a diagnostic for PU

* Objective:
« Provide a diagnostic for the adequacy of an
estimate of parameter uncertainty

Dosne et al. JPKPD 2016 (in press)



dOFV distribution

1.

2.

Evaluate parameter vectors sampled from
PU distribution on original dataset

Subtract OFV of the final model for
original data set

. Compare bootstrap dOFV distribution

with reference (chisq) dOFV distribution



Comparison with expected distribution
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Simulation example 1

dOFV
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Simulation example 1

0.4 0.6 0.8 1.0 04 0.6 0.8 1.0 04 0.6 0.8 1.0
| | | ] | | ] ] ] | | ]
Cova0 CovQ0 Cov90
TV — —1— —@&—
_% RES.ERR — —— —o— lo—i
-
g V.V — —— —— —e-—
o
IV.CL < ——— —o—H ——
TVCL — —e— ——

coverage



Parameter uncertainty estimation

= Covariance matrix

— Not always retrievable or suitable

— Assumes symmetry & linear correlations
= Bootstrap

— Empirically shown to be inadequate for
small/medium-sized data

— Computationally problematic (time & stability)

= Need for additional PU estimation methods
— Sampling - Importance - Resampling (SIR)




SIR principle:
Sampling, Importance weighting, Resampling />

= Approximate unknown posterior
distribution by weighted known distribution!i!

0.4
e Sample p parameter vectors 203
SAMPLING Step 1 : . 50-2
from covariance matrix Q0.1
003500 25
Parameter
IMPORTANCE e Calculate weights based on fit
WEIGTHING Step 2 to original data
%
e Resample M vectors based on 0.3
HEsl e Sicge weights from step 2 03 /\
3 . . 0.0
e Compute confidence intervals 2 0 2
Parameter

[1] Rubin DB, Bayesian Statistics. 1988;3:395-402



Importance ratios (IR) LAY

- Resampling probabilities:

lik(Y]6)
R= @

- Likelihood of data given parameter vector
divided by likelihood of vector in proposal

 How well vector fits data compared to how
well it should fit data

IR = 1: as expected - not reweighted in
resampling
IR > 1: better than expected - upweighted

. IR < 1: worse than expected 2> downweighted




Components of Importance Ratios

* Many vectors do not fit as well as expected
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SIR optimization I
N

=SIR is a procedure with options

Number of e The higher number the better
laleEl el gl el (=3 @ A costly way of increasing precision

e Resampling can improve efficiency
Resampling — but also decrease performance

e With or without replacement?

Inflation of e A too wide proposal is better than a
sampling too constrained — basis for

distribution inflation?




SIR optimization II - make SIR iterative
A

- Updating of proposal is more efficient than
increasing initial sampling

« Fit multivariate Box-Cox to SIR output and use as
new proposal

e Sample M parameter

SAMPLING Step 1 vectors from proposal
distribution h(G)
IMPORTANCE . :
N iterations Wt T & Calculatelimportanceiratio

(IR) for each vector

e Resample m vectors based
on IR

¢ Fit multivariate Box-Cox

Dosne et al., PAGE 2016



dOFYV plot iterative SIR - convergence check \/
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Implementation of SIR in PsN/NONMEM "

Define proposal distribution

Inflate

Covariance matrix  Limited bootstrap Generic

covariance matrix

Automated 5-step SIR

- CL KA IV CL RUV
D0 INIT BIN 2 INIT BIN 10 INIT BIN 10 INIT BIN 6
[oh

/\//\’ 1a. Sampling M = 1000 1b. Imp.aveighting 1c. Resampling m = 200

= 2a. Sampling M = 1000 2b. Impaveighting 2c. Resampling m =400

£ 1
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o
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Check diagnostics
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<y? overlaid different

3

Dosne et al., PAGE 2016



Conclusion SIR

= SIR

4 allows for asymmetry in uncertainty distribution
4 does not require parameter re-estimation

- “Fast and stable” method to assess
parameter uncertainty, in particular if:
v'long estimation times
v bootstrap convergence issues
v"unbalanced/small study designs
v"model-based meta-analysis
v informative priors in model
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