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Coffee No. 1

Bayesian Statistics
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what I am doing right now

“Development of evidence levels 
for small population groups”

Description of Work - Task 4.1.:
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the main problem

Full study programs 
in paediatric populations 
are often not possible
due to small sample-sizes. 
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the main problem

It is necessary to
● either raise Type I error rate,
● or lower the Power.
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the solution

● Adult evidence on efficacy may be 
available.

● Construction of a Bayesian model.

● Translation of frequentist 
methods.
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the solution

Bayesian model
● mathematically straightforward
● but

○ How much evidence can be 
extrapolated?

○ Interpretability!
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the solution

Definition of an extrapolation 
probability in a hierarchical model.
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Coffee No. 2

Adaptive

Designs

and

Multiplicity
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what I may do in the future

Description of Work - Task 4.3.:

“Adaptive designs to enable 
comparative effectiveness analysis”
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what I may do in the future

Adaptive Designs
● guarantee for Type I error rate 

control, while
● allowing for modifying sample-

sizes, hypotheses, … 
● at interim 
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what I may do in the future

Key research topic at our 
section!



FP7 HEALTH 2013 - 602552

Coffee No. 3 life, 
the universe, 

and everything
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Thank you!
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Sergii Krasnozhon MCPMod approach and its further possible extensions



Introduction

A good understanding and characterization of the dose
response relationship is a fundamental step in the
investigation of the new compound.
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Set of candidate models.
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Set of candidate models.

Optimal contrast coefficients.

Design
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Hybrid aprroach - MCP-Mod (Bretz et al. [2005])

The optimal contrasts
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Hybrid aprroach - MCP-Mod (Bretz et al. [2005])

Set of candidate models.

Optimal contrast coefficients.

Establishing a dose response
signal while controlling T1E.

Design
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Set of candidate models.

Optimal contrast coefficients.

Establishing a dose response
signal while controlling T1E.

Selection of a single model using maxm Tm, AIC
or BIC, possibly combined with external data.

Design
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Hybrid aprroach - MCP-Mod (Bretz et al. [2005])

Set of candidate models.

Optimal contrast coefficients.

Establishing a dose response
signal while controlling T1E.

Selection of a single model using maxm Tm, AIC
or BIC, possibly combined with external data.

Dose estimation and selection (MED, EDp, . . . )

Design

Analysis

Sergii Krasnozhon MCPMod approach and its further possible extensions



Hybrid aprroach - MCP-Mod (Bretz et al. [2005])

For ∆ = 0.4
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Group Means Model Predictions Estim. Dose

MEDemax = 0.1642.

MEDlinear = 0.7161.

MEDlinlog = 0.3655.

MEDlogistic = 0.1636.
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Hybrid aprroach - MCP-Mod (Bretz et al. [2005])

MCP-Mod
Provides the flexibility of modeling for dose estimation.
Robustness to model misspecification.
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Future work

Combining Bayesian Model Averaging (BMA) and
MCPMod

Focus only on statistically significant models to use in BMA
approach, starting with advanced weight estimates.
Define a rule for the choice of the reference model.
Evaluate difference between single model approach,
MCPMod + BMA, and full BMA.
Start with non-adaptive case.
Move to an adaptive case.

Adaptive clinical trial designs with multiple doses and use of
modeling approaches:

to establish a positive dose-response profile.
to increase the power of declaring effective dose statistically
significant.
to support dose selection at an adaptive interim analysis.
to use closure principle for the control of T1E rate in a
strong sense.
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Sergii Krasnozhon MCPMod approach and its further possible extensions



IDEAL Project
WP3-Extrapolating dose response information

to small populations
Task 3.1: New statistical measures for similarity of dose-response between

a source and a target population

FP7 HEALTH 2013 - 602552 1



IDEAL Project
Introduction

I In clinical trials the observation of different populations and their
reaction on medicinal drugs is of huge importance

I Our work package deals with extrapolation of dose response
information from a given source population to a target population
which is much smaller in size

I In this regard regression models are very important
I In our first task we focused on measuring the similarity of two dose

response curves
I Main objective of the last half year: improvement of the accuracy and

the computational effort of confidence bands
I Furthermore development of a statistical test measuring the similarity

of two dose response curves

FP7 HEALTH 2013 - 602552 2



IDEAL Project
New Confidence Bands

I We consider two models

Y1,i = m1(xi , α) + ε1,i ; i = 1, ...n1

Y2,i = m2(xi , β) + ε2,i ; i = 1, ...n2

on the same covariate region D
I We define two stochastic processes:

pn(x) = m1(x, α̂)−m2(x, β̂)− (m1(x, α)−m2(x, β))

G(x) = ∇m1(x, α)T ·σ1·
√
λ·Σ1/2

1 ·Z1−∇m2(x, β)T ·σ2·
√

1
1− 1

λ

·Σ1/2
2 ·Z2

I {G(x)}x∈D is a centered Gaussian process
I {√

n1 + n2 · pn(x)
}

x∈D
D→ {G(x)}x∈D

FP7 HEALTH 2013 - 602552 3



IDEAL Project
With µ := q1−α(maxx∈D |Ĝ(x)|) it holds

lim
n1,n2 →∞
n1+n2

n1
→ λ

P(L(x) ≤ m1(x, α)−m2(x, β) ≤ U (x) ∀ x ∈ D) = 1− α

Figure: Two EMAX models with constant difference δ = 1. The right figure
shows the mean difference curve and the confidence bands.

FP7 HEALTH 2013 - 602552 4



IDEAL Project

I New statistical tests using the maximum absolute deviation and the
absolute difference of the MEDs as different test statistics → much
higher power)

I next working period:
→ accomplish the R software
→ compare our results to the currently available techniques
→ proceed with the second task- the extrapolation of efficacy and
safety information

FP7 HEALTH 2013 - 602552 5
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test

Randomisation for the design of clincal trials

Diane Uschner

Uniklinik RWTH Aachen

June 28, 2014

Diane Uschner Randomisation for the design of clincal trials 1 / 6
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Objectives of Randomisation (ICH E9)

Statistical basis for quantitative evaluation of the evidence relating to
treatment effects.

Produce treatment groups with similar distribution of prognostic
factors.

In combination with blinding: Help avoid bias in the selection and
allocation of subjects arising from predictability of treatment
assignments (selection bias).

Diane Uschner Randomisation for the design of clincal trials 2 / 6
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Randomisation Procedure

In a two-armed trial, a randomisation procedure M is a probability
distribution over the set Γ = {−1, 1}N

Idea

Use suitable randomisation procedure to reduce the effect of all kinds of
bias.

Diane Uschner Randomisation for the design of clincal trials 3 / 6
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Set of all sequences

Diane Uschner Randomisation for the design of clincal trials 4 / 6

duschner
Notiz
depicted is the set of possible sequences Gamma and in blue one possible sequence
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MP’s set of sequences

Diane Uschner Randomisation for the design of clincal trials 5 / 6

duschner
Notiz
now the set of possible sequences of the randomisation procedure MP (maximal procedure) is depicted in black. one possible sequence is highlighted in blue.



FP7 HEALTH 2013 - 602552

Tasks in work package 2

D1 Bias assessment for randomisation procedures.

D2 Development of adequate randomisation procedures in small
population groups.

D3 Development of a randomisation test in small population
groups.

Diane Uschner Randomisation for the design of clincal trials 6 / 6
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test

Correct Guesses - One Method assessing the Impact of
Selection Bias in Clinical Trials

David Schindler

Department for Medical Statistics
RWTH Aachen

June 30, 2014

David Schindler Lightning Talk 1 / 5
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Doubly blinded study

David Schindler Lightning Talk 2 / 5
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Doubly blinded study

David Schindler Lightning Talk 3 / 5
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Correct Guesses (CG)

Let T = (T1, . . . ,Tn) and Ti ∈ {0, 1} be a randomization sequence.
We write:

Ti =

{
1 patient i is assigned to A
0 patient i is assigned to B

.

Under the assumption of final balance in the trial, it is opportune for
the investigator to guess

g(Ti ) :=


0 NA(i − 1) > NB(i − 1)
Ber(0.5) NA(i − 1) = NB(i − 1)
1 NA(i − 1) < NB(i − 1)

David Schindler Lightning Talk 4 / 5
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Measureing the CG and research tasks

We define the expected number of CG under the use of a
randomization method M:

CGM := EM(E (#{i = 1, . . . , n|g(Ti ) = Ti}).

Research tasks:
I Compare the CG for several randomization methods and their settings.
I Which randomization methods have low CG and are meaningful for

clinical trials with small population groups?
I Investigate covariance structure of Ti and Tj with i 6= j in dependence

of the randomization method.

David Schindler Lightning Talk 5 / 5
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test

Chronological bias in randomized clinical trials

Miriam Tamm

Department of Medical Statistics
RWTH Aachen

June 30, 2014

Miriam Tamm Lightning Talk 1 / 6
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Time trends & Chronological bias

Sequential recruitment of patients
Time trends during the recruitment phase

⇒ Risk of bias in the results of the clinical trial (Chronological bias)

Randomization: Balance between treatment groups throughout the
recruitment time

Miriam Tamm Lightning Talk 2 / 6
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In context of rare diseases

„A common problem with trials in rare diseases is that
recruitment is slow because patients are so rare [...].“
(EMA, Guideline on clinical trials in small populations, 2006)

Rare Diseases ⇒ Long recruitment time
Changes over the course of recruitment

⇒ Increased susceptibility to chronological bias

Miriam Tamm Lightning Talk 3 / 6
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Model

Parallel group design: Two treatments A and B with equal sample sizes,
randomization sequence Z = (Z1, . . . ,Zn) with realization
z = (z1, . . . , zn) ∈ {0, 1}n

Model

Yi = µAZi + µB(1− Zi ) + τ(i) + σei

with time trend τ(i) ∈ R and with ei ∼ N(0, 1) independent of Zi ,
i = 1, . . . , n, n ∈ 2N.

Linear trend: τ(i) = λ · (i − 1)
Step: τ(i) = λ · 1{i≥c} (i = 1, . . . , n, λ ∈ R, c ≥ 1)
Logarithmic trend: τ(i) = λ · log(i)

Miriam Tamm Lightning Talk 4 / 6
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Example (n = 6, Linear trend)

RAR:
(6
3

)
= 20 possible sequences

Z: Bias:
AAABBB −3λ
AABABB − 7/3λ
AABBAB ABAABB − 5/3λ
AABBBA ABABAB BAAABB − λ
ABABBA ABBAAB BAABAB − 1/3λ
BABAAB BAABBA ABBABA 1/3λ
BBAAAB BABABA ABBBAA λ
BBAABA BABBAA 5/3λ
BBABAA 7/3λ
BBBAAA 3λ

Miriam Tamm Lightning Talk 5 / 6
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Example (n = 6, Linear trend)

MP with maximum tolerated imbalance (MTI) of 2: 18 possible sequences

Z: Bias:
AAABBB −3λ
AABABB − 7/3λ
AABBAB ABAABB − 5/3λ
AABBBA ABABAB BAAABB − λ
ABABBA ABBAAB BAABAB − 1/3λ
BABAAB BAABBA ABBABA 1/3λ
BBAAAB BABABA ABBBAA λ
BBAABA BABBAA 5/3λ
BBABAA 7/3λ
BBBAAA 3λ

Miriam Tamm Lightning Talk 5 / 6
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Example (n = 6, Linear trend)

MP with maximum tolerated imbalance (MTI) of 1: 8 possible sequences

Z: Bias:
AAABBB −3λ
AABABB − 7/3λ
AABBAB ABAABB − 5/3λ
AABBBA ABABAB BAAABB − λ
ABABBA ABBAAB BAABAB − 1/3λ
BABAAB BAABBA ABBABA 1/3λ
BBAAAB BABABA ABBBAA λ
BBAABA BABBAA 5/3λ
BBABAA 7/3λ
BBBAAA 3λ

Miriam Tamm Lightning Talk 5 / 6
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Research tasks

Comparing different randomization procedures regarding
I Bias and variance of estimate of treatment effect
I Impact on results of statistical inference (type I error, power)

Overall properties
Maximum extent of bias in worst-case scenarios

Miriam Tamm Lightning Talk 6 / 6
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Statistical issues in the design of 
small population trials 

Artur Araujo 
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Objective: 
 
Determine the effect of medical treatments. Does the treatment really improve a patient’s health 
and quality of life? 
 
How? 
 
Measure some outcome or explained variable that reflects a patient’s state of health, both under 
the presence and absence of treatment. If all variables that influence the outcome variable are kept 
equal under presence and absence of treatment, then the difference in outcome is due to the effect 
of treatment. This procedure is called experiment or clinical trial. 
 
Issues: 
 
Outcome or explained variables are mathematical functions of one or many explanatory variables. 
Several of such mathematical relationships are known to science and find many applications in 
engineering. Due to the complexity of the universe and limitations of the human mind its difficult to 
account for all explanatory variables in mathematical models. In practice unknown or unaccounted 
for explanatory variables change across measurements of outcome and variability is observed! The 
true difference due to treatment can become very difficult to determine! Is the observed difference 
in outcome due to treatment or due to unknown explanatory variables? 
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The randomized controlled trial 

Thursday, June 30, 2014 

Parallel 
 
A sample of subjects is divided in as many groups as distinct treatments being 
compared. Each group receives only one treatment. So each subject receives only 
one treatment. 
 
Crossover 
 
Subjects are given sequences of treatments with the objective of studying 
differences between individual treatments (or sub-sequences of treatments). 
 
N-of-1 
 
A single subject receives several sequences of treatments. 
 



www.crp-sante.lu 

Small population issues 

Thursday, June 30, 2014 

1. Sample size calculations in clinical trial designs are based on 
power, the probability to detect a difference when a difference in 
fact exists. 

2. The power increases as the variance of the difference in means 
decreases. 

3. In general the variance decreases as sample size increases. 

How can sample size be optimized to deliver usefull 
information given the resources available? 
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Optimizing the trial 

Thursday, June 30, 2014 

a. Increase the signal (difference in means). 
b. Reduce the noise (variance of difference in means). 

i. Increase the number of subjects. 
ii. Reduce the variance of measurements. 
iii. Put more variables in models. 
iv. Opt for more efficient designs, for example cross-over trials. 
v. Increase the number of measurements, by adding more periods 

or measure more frequently within periods. 
vi. Use adequate statistical modelling. 
vii. Choose more sensitive outcome measures (surrogate 

endpoints). 
viii. Use correct transformation of variables. 
ix. Reduce variability in treatment delivery. 

c. Reduce “decision precision” by accepting higher type I and or type II 
error rates. 
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𝑰𝒏𝒗𝟏 𝑥11 ⋯ 𝑥1𝑝
⋮ ⋱ ⋮
𝑥𝑛1 ⋯ 𝑥𝑛𝑝

 

𝐸𝑉1 𝐸𝑉𝑝 

𝑰𝒏𝒗𝒏 

𝑦1
⋮
𝑦𝑛

 = 

𝑿 𝛽 𝒚 

𝛽1
⋮
𝛽𝑛

 + 𝑧 

𝑧~𝑁 0, 𝜎𝐼𝑛  𝑥𝑗𝑘 ∈ −1, 0, 1 ,  

duschner
Notiz
rows = individuals (patients)
columns = prognostic factors




[1] Bogdan, M., van den Berg, E., Su, W., Candès E. J., Statistical 
Estimation and Testing via the Ordered 𝑙1 Norm, 2013. 

𝑎𝑟𝑔𝑚𝑖𝑛 
1

2
𝑦 − 𝑋𝑏 2 + 𝜎 λ𝑖 ∙ |𝑏|(𝑖)

𝑝

𝑖=1

 𝑙2 𝑏 

For some λ1 ≥ ⋯ ≥ λ𝑝 ≥ 0 SLOPE is defined as solution to  

 

where |𝑏|(𝑖) denotes 𝑖th largest absolute value of coefficients of 𝑏 

 



False discovery 

Undiscovered relevant regressor 

1.31
0
0.5
0
2.12
−1.03
0
1.23
⋮

 

5.1
0
3.03
−1
0
0
1.2
0
⋮

 

𝜷 𝜷   

FDR POWER 

Correctly identified irrelevant regressor 

Correctly identified relevant regressor 

related to related to 



𝑿- data matrix with p=26315 columns 
and n=5402 rows 

𝜷- constant on k randomly selected 
places, zeros in other locations 

𝒚- generated as 𝐗𝜷 + 𝒛, where 
     𝑧~𝑁 0, 𝐼𝑛  

Target level of FDR equal to 0.1 
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Intro

Outline

Motivation - PCA

Subspace clustering

Application to biology
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Intro

PCA

Getting meaningful model requires dimensionality reduction
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Subspace clustering

Subspace clustering
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Subspace clustering

Subspace clustering

We need to find

# subspaces

Dimension of each

subspaces

Point segmentation
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Subspace clustering

Clustering around latent variables - K-means based method

Until convergance is obtained:

1 Reassign variables to the closest center (most correlated subspace)

2 Compute new centers (principal components)

Number of subspaces choosen with information criterion
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Applications to biology

Application to genomics

Different clusters are gene pathways

For each pathway we extract only a number of important factors

Still missing: introducing aprior knowledge
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Applications to biology
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Applications to biology

Estimating number of clusters using BIC

0.5 1 2 4 8 16

dim=2 5.0 ± 0 10.3 ± 0.6 11.3 ± 0.9 11.7 ± 1.2 10.6 ± 0.8 10.1 ± 0.3

dim=3 5.0 ± 0 5.5 ± 0.9 11.0 ± 1.1 11.9 ± 1.8 10.7 ± 0.6 10.2 ± 0.4

Table : Average number of choosen subspaces (true number is 10) for different

signal to noise scenarios and subspace dimensions. Number of variables is 200.

Number of observations is 100. 100 repetitions
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Applications to biology
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Backup Ways of measuring clustering accuracy

Definition (Missclassification rate)

Let us assume that there are two segmentation of n points - X and Y.

They are both divided into K clusters. X = (X1, ...,XK ), Y = (Y1, ...,YK )

We find a best match among all permutations π if clusters numbers with

respect to measure

Missclassification = 1 − max
π

# points p correctly classified

# points
=

= 1 − max
π

∑
p

∑K
i 1p∈Xi and p∈Yπ(i)

# points
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Backup Ways of measuring clustering accuracy

Definition (Rand Index)

Let us assume that there are two segmentation of n points - X and Y. X is

divided into r subsets and Y is divided into s subsets. Rand index is

R =
a + b(n

2

)
where a =

# pairs of points that are in the same set in X and in the same set in Y

b =

# pairs of points that are in different set in X and in different set in Y

Adjusted Rand Index (ARI)

Including the expected number of correct seperations.
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Backup Ways of measuring clustering accuracy
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ADAPTIVE DOSE-FINDING DESIGNS  
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PHASE I 

 First stage of human experimentation with a new 

drug or combination 

 

 Objective: to find a dose level associated with 

“acceptable” toxicity 

 

 In Anti-cancer cytotoxic agents 
 Acceptable toxicity can be high 

 Toxicity and efficacy increase with dose 
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EXPERIMENTAL DESIGN 

 Two constraints: 
 Ethical 

 Do not expose patients to dose levels with too high toxicity  

 Do not expose patients to ineffective dose levels 

 Small sample size: 30 patients 

 

 Consequences: 
 Restricted number of dose levels 

 Adaptive design:  
 Re-estimation of the dose-toxicity after each cohort 

 Sequential dose allocation with dose administration rules 

 

 Algorithm-based/Model-based approaches 
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4 

MOLECULARLY TARGETED AGENT 

 Emergence of MTAs → Alternatives/complements to Cytotoxic  

 Block the growth & spread of cancer by interfering with specific 

molecules  

 Toxicity is increasing with the dose whereas efficacy is decreasing and 

then plateaus 



COMBINATIONS 

 Two or more drugs escalated within the same dose-finding 
clinical trial 

 Example 

 Consider 2 drugs: 

 

 

 Level d3 may be more or less toxic than d4 

 There are two possible simple orders (models). 

 

 

 

 Combinations clinical trials need specific dose-escalation rule 
that take into account the ordering issue 
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PHD ON IDEAL 
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IDEAL 

  Beginning: 1st December 2014  

Direction: France MENTRE, INSERM 

UMR 1137 
  

 Adaptive designs 
 

  Model averaging 
 

  MCPMod 

7 



Clinical trial simulation to evaluate power to compare the 
antiviral effectiveness of two hepatitis C protease inhibitors 

using nonlinear mixed effect models: a viral kinetic approach 
 BMC Med Res Methodol 2013:13-60. 

 
Cédric Laouénan, Jérémie Guedj, France Mentré 
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Hepatitis C Virus (HCV) viral kinetic modeling  

• Mathematical modeling of viral load (VL) decay after treatment initiation 

has brought critical insights for the understanding of the drug’s mechanism 

of action and its antiviral effectiveness1 

 

• Population approach with nonlinear mixed effect models (NLMEM): 

appropriate to estimate parameters of these models and their inter-

patients variability 

 

1 Neumann AU et al. Science (1998) 2 



I: Infected 
cells 

V: Free 
viruses 

c 
P0  lo

g 1
0 

HC
V 

R
N

A
 

Days after treatment 

3 

5 

6 

7 

0 4 7 

 

≈δ 

≈c 

(1-ε) 

δ 
4 

2 1 

 log10(1-ε) 

T: Target 
cells 

Infection (B) 

Standard viral dynamic model1 

ɛ = antiviral effectiveness (percentage 
of blockage of virion production) 

1Neumann et al. Science (1998)  
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Objectives 

To evaluate by simulation the ability of the HCV dynamic 
model to detect a difference of antiviral effectiveness 
between two triple therapies with adequate power 
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Clinical trial simulation 
• Designs:  

– n: number of VL (7 VL or 5 VL “sparce” in the first 14 days) 

– N: number of patients per triple therapie (10 to  100) 

• 500 datasets were simulated for each design (R software v2.15) 

 

Triple therapy 
with telaprevir 
ε = 99.9% 

Triple therapy 
with boceprevir 
ε = 99.0% 

Time 
(days) 

HC
V-

RN
A 

(lo
g 10

 
IU

/m
L)
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• Population parameters were estimated using SAEM algorithm1 in MONOLIX v4.22 

• Test to compare the antiviral effectiveness between triple therapies: 

– By modeling: Wald test on treatment effect β = logit (εtelaprevir) - logit (εboceprevir)  

– Without modeling: Wilcoxon test to compare VL differences between D0 and D14 
 

Clinical trial simulation 

1 Delyon B et al. Ann Stat (1999) 
2 http://software.monolix.org 
3Samson A et al. Comput Stat Data Anal (2006) 
4 Bertrand J et al. Biometrics (2012) 

Type I error 
% of datasets where p-value < 0.05 under H0  

(assuming ε is similar for both triple therapies)  

Power 
% of datasets where p-value < 0.05 under H1* 

(assuming ε is NOT similar both triple therapies)  

* threshold correction with permutation 
approach (inflation of the type I error4) 
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Evolution of the type I error of the Wald test 
according to the study design 

95% prediction interval
(500 datasets)

14.4%

7.6%

9.8%

6.2%

5.00

8.0%

10 pts per PI
7 VL

30 pts per PI
7 VL

50 pts per PI
7 VL

100 pts per PI
7 VL

30 pts per PI
5 VL

Ty
pe

 I 
er

ro
ro

f t
he

 W
ald

 te
st

Type I error Wilcoxon is preserved 
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Power (%) to detect a difference of effectiveness between two 
triple therapies 

Design 10 patients per PI 
7 VL 

εboceprevir 99.8% 99.5% 99.0% 

 Wald test (uncorrected) 62.2 99.8 100 

 Wald test (corrected) 44.2 98.4 100 

 Wilcoxon test  6.6 11.2 26.8 

Assuming εtelaprevir = 99.9% 
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Conclusion 
• Viral dynamic model analyzed with NLMEM provided good power to compare 

antiviral effectiveness of two triple therapies, even with sparse initial sampling 

• The Wald test is asymptotic: correction needed with small samples 

• Unlike standard approach (Wilcoxon test), modeling approach (Wald test) provides a 
powerful tool to detect a difference in early viral kinetic profile 

9 

Perspectives in IDEAL 

 

• Evaluation of corrections of the Wald test 

• PFIM software1: R package for optimal design based on the Fisher Information 
Matrix for mixed models  

 prediction of power and number of subject needed using the Fisher Information 
Matrix for small sample size 

• PFIM based on Wald test… include a correction in Fisher Information Matrix 
calculation? 

1 Bazzoli C, Retout S, Mentre F. Design evaluation and optimisation in multiple response nonlinear mixed effect 
models: PFIM 3.0. Comput Methods Programs Biomed. 2010;98(1):55-65. 



Model-based Power Calculations 
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Schematic representation of 
two model-based power 

algorithms 

MC: Monte-Carlo Simulations and Estimations 
PPE: Parametric Power Estimation 
 
S. Ueckert et al, Accelerating Monte-Carlo Power Studies through Parametric 
Power Estimation, PAGE 2014, Alicante, Spain  

duschner
Notiz
ppe was developped by Sebastian Ueckert, who will shortly start working at INSERM at France Mentré's group. It requires much less computation than the MC algorithm, which makes it faster.



Power obtained  from both algorithms  
and reference power for the disease 

progression model 

S. Ueckert et al, Accelerating Monte-Carlo Power Studies through Parametric 
Power Estimation, PAGE 2014, Alicante, Spain  



Next step 

• Apply and compare these methods in a rare 
disease scenario – for example Juvenile 
Idiopathic Arthritis 



 
 

Pharmacometrics Research Group 
Department of Pharmaceutical Biosciences 

Uppsala University 
Sweden 

Handling uncertainty when 
doing clinical trial simulations 
for small population groups 

Anne-Gaëlle Dosne, PhD student 
Young Scientists Meeting  

Vienna 2014-06-30 

http://www.uu.se/
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Model parameter uncertainty 

CTS 

AVAILABLE DATA 

PREDICTED DATA 

CTS CTS 
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Model parameter uncertainty 

Covariance 
matrix Bootstrap 

SIR 

FOCUS OF THIS RESEARCH 
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Model uncertainty 
AVAILABLE DATA 

CTS CTS PREDICTED DATA 

OR MODEL AVERAGING 
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Model uncertainty 

MODEL AVERAGING  
Weighting strategy 

FOCUS OF THIS RESEARCH 
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Who I am and what I do

PhD student at Chalmers University, Gothenburg.
Background in engineering physics.
Working in the IDEAL project.
WP9 = Decision analysis in small population groups.

Sebastian Jobjörnsson IDEAL (WP9)



WP9

Main goals of WP9:
Improve the rational basis for decisions.
Align stakeholder perspectives.

Stakeholders:
Pharmaceutical companies
Payers
Regulatory agencies
Physicians
Patients

Sebastian Jobjörnsson IDEAL (WP9)



Stakeholders as decision makers

Use Bayesian decision theory to find optimal decision
rules.
Model each stakeholder as a rational agent.
Each agent has beliefs (a probability distribution).
Each agent has preferences (an utility function).
Optimal decision rules found by maximizing expected
utility.

Sebastian Jobjörnsson IDEAL (WP9)



Formalisation of preferences

High level goals (preferences) must be defined by society.
Typical goals:

Personalised health care.
Adequate research in the area of rare diseases.

These must be translated into an utility function.

Sebastian Jobjörnsson IDEAL (WP9)



Aligning stakeholder perspectives

Strategy of analysis:
Assume rationality (for the appropriate stakeholders).
Create conditions that make certain decision rules rational.
This will change the decision rules used by rational agents.

Some examples on how decision rules might be changed:
Incentives to companies.
Adjusted regulatory requirements.
Alternative market rules.
New governmental institutions.

Sebastian Jobjörnsson IDEAL (WP9)



Decision situation for multiple stakeholders

Patient

Physician

Advice

Regulatory
agency

Approval
Company

Trial

Payer

Incentives
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Decision situation for regulatory agency

N = number of patients adopting a new medication.
∆ = difference in effect between new and standard treatment.

Utility = N∆

Utility = 0

Regulatory
agency

Approve

Reject

Optimal to approve if and only if E(N∆ | Clinical results) > 0.

Sebastian Jobjörnsson IDEAL (WP9)



Research until now

Mainly questions about the decisions made by a company:
Impact of regulatory requirements on optimal sample size?
Impact of willingness to pay on optimal sample size?

Sebastian Jobjörnsson IDEAL (WP9)



Future research

What regulatory requirements should be used?
Are special requirements optimal for small populations
(rare diseases)?
What incentives (from society to private sector) are
appropriate?

Sebastian Jobjörnsson IDEAL (WP9)



The end

Thanks for your attention!

Sebastian Jobjörnsson IDEAL (WP9)
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