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Assessing a surrogate predictive value: A
causal inference approach.
Ariel Alonso1,⇤, Wim Van der Elst2 & Paul Meyvisch3

Several methods have been developed for the evaluation of surrogate endpoints within the causal-inference
and meta-analytic paradigms. In both paradigms much effort has been made to assess the capacity of
the surrogate to predict the causal treatment effect on the true endpoint. In the present work, the so-
called surrogate predictive function (SPF) is introduced for that purpose, using potential outcomes. The
relationship between the SPF and the individual causal association (ICA), a new metric of surrogacy recently
proposed in the literature, is studied in detail. It is shown that the SPF, in conjunction with the ICA, can
offer an appealing quantification of the surrogate predictive value. However, neither the distribution of the
potential outcomes nor the SPF are identifiable from the data. These identifiability issues are tackled using
a two-step procedure. In the first step, the region of the parametric space of the distribution of the potential
outcomes, compatible with the data at hand, is geometrically characterized. Further, in a second step, a
Monte Carlo approach is used to study the behavior of the SPF on the previous region. The method is
illustrated using data from a clinical trial involving schizophrenic patients and a newly developed and user
friendly R package Surrogate is provided to carry out the validation exercise. Copyright c� 2015 John Wiley
& Sons, Ltd.
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1. Introduction

Over the last decades, several strategies have been proposed for the evaluation of surrogate endpoints within
the so-called causal-inference and meta-analytic paradigms [1, 2, 3]. In the former, individual causal treatment
effects are often the primary building block for the analysis in a single-trial setting (STS), whereas in the later
expected causal treatment effects, i.e., the averages of the individual causal effects across all patients within the
trial populations, are used to carry out the validation exercise. In both paradigms attempts have been made to
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assess the capacity of the surrogate to predict the causal treatment effect on the true endpoint. Indeed, coefficients
of determination and information-theoretic metrics have been introduced in the meta-analytic context, to assess the
prediction of the expected causal treatment effect on the true endpoint using the expected causal treatment effect on
the surrogate [1, 4, 5]. Similarly, in the causal-inference paradigm, the causal effect predictiveness (CEP) surface
was proposed to evaluate the predictive value of a principal surrogate [6]. More recently, the so-called individual
causal association (ICA), a metric with a direct interpretation in terms of prediction accuracy, has been introduced
in a causal-inference framework as well [7, 8].
The validation of surrogate endpoints in the special setting in which one or both outcomes are binary, has already
received attention in the literature [6, 9, 10]. For instance, a Bayesian modeling approach has been proposed to
estimate the associative proportion when both the true and surrogate endpoints are binary, under the assumption
of monotonicity [9]. The previous method was extended to accommodate missing data as well [10]. In the present
work, the so-called surrogate predictive function is introduced to evaluate the surrogate predictive value when both
endpoints are binary, using individual causal treatment effects in the STS. The methodology builds up on recently
introduced validation strategies and allows to answer important scientific questions.
A common problem faced by many causal inference methods is their reliance on untestable assumptions to achieve
identifiability of the parameters of interest. For example, to achieve identifiability when estimating the CEP, it has
been assumed in previous research that the surrogate endpoint is constant in the control group, and that the value of
the surrogate potential outcome for the new treatment (S1) in the control group could be predicted using baseline
covariates [6]. Assuming a constant value for the surrogate in the control group may be unrealistic in most practical
situations and good predictive baseline covariates may actually not exist or may not be available. We address the
identifiably issues using a two-step procedure. Basically, the surrogate predictive value is evaluated across different
values of the unidentifiable parameters characterizing the distribution of the potential outcomes.
In section 2 the causal-inference model is presented. The SPF is introduced in section 3 where its relationship with
the ICA is studied and the strategy to cope with the identifiability issues is described. The case study in presented
and analyzed in section 4. In section 5 a simulation study is carried out to evaluate important aspects of the proposed
methodology. The case study is re-analyzed in section 6 and some final comments are given in section 7.

2. Causal-inference model

In the rest of the manuscript it will be assumed that only two treatments are under evaluation (Z = 0/1) and both
the true and surrogate endpoints are binary variables coded as 1 when a beneficial outcome is observed and 0
otherwise. In addition, the standard stable unit treatment value assumption (SUTVA) will also be made [11].
The so-called Rubin’s model for causal inference assumes that each patient has a four dimensional vector of
potential outcomes Y = (T0, T1, S0, S1)

0. T1, S1, T0 and S0 are potential outcomes in that they represent the
outcomes for the true (T ) and surrogate (S) endpoint of an individual had he received the treatment or control,
respectively. On account of simplicity, in the following the discussion will be temporarily restricted to the surrogate
endpoint, but similar arguments can be put forward for the true endpoint as well.
The bivariate distribution of the vector of potential outcomes for the surrogate Y S = (S0, S1)

0 is characterized by
the parameters ⇡S

ij = P (S0 = i, S1 = j) with i, j = 0, 1, and has marginals ⇡S
i. =

P

j ⇡
S
ij , ⇡S

.j =
P

i ⇡
S
ij . However,

often in practice only one of the two potential outcomes S0 and S1 can be observed and, consequently, the
distribution of Y S is frequently not identifiable [12]. More specifically, the association structure of the two potential
outcomes cannot be inferred from the data. Unlike the association structure, the marginal probabilities ⇡S =

�

⇡S
0·,⇡

S
1·,⇡

S
·0,⇡

S
·1
�0 are identifiable under fairly general conditions. In fact, under SUTVA, S = ZS1 + (1� Z)S0

and if the treatment assignment is independent of the potential outcomes (Y S?Z), then ⇡S
1· = E (S|Z = 0) with
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⇡S
0· = 1� ⇡S

1· and ⇡S
·1 = E (S|Z = 1) with ⇡S

·0 = 1� ⇡S
·1. SUTVA basically states that the potential outcomes

of an individual are independent of the treatments received by other individuals in the study and that the
observed outcome under treatment Z equals the corresponding potential outcome SZ . In addition, due to the
random treatment allocation, the aforementioned assumption of independence Y S?Z can often be guaranteed
in randomized clinical trials.
As previously stated, in order to identify the entire bivariate distribution of Y S additional assumptions on the
association structure are needed. To this end, let us now consider the odds ratio ✓S = ⇡S

00 ⇡
S
11/⇡

S
10 ⇡

S
01. Using ✓S

and the marginal probabilities, the full bivariate distribution of Y S can be recovered [13].
The individual causal effect of the treatment on the surrogate can be defined as �S = S1 � S0; it follows a
multinomial distribution parametrized by ⇡�S

i = P (�S = i) =
P

pq ⇡
S
pq with i = �1, 0, 1 and the sum taken

over all sub-indexes p, q satisfying q � p = i. Note that, like the distribution of Y S , the distribution of the
individual causal treatment effect on the surrogate endpoint �S is not identifiable from the data, without making
untestable assumptions about the association structure of the potential outcomes. Nonetheless, once ✓S is fixed, the
distribution of �S becomes fully identifiable.
Similarly, the potential outcomes Y T = (T0, T1)

0 can be used to define the individual causal treatment effect on
the true endpoint �T and its distribution. The vector of individual causal treatment effects � = (�T,�S)

0, which
follows the multinomial distribution given in Table 1, is the fundamental quantity used in the following sections to
assess the surrogate predictive value.

[Insert Table 1 about here]

3. Surrogate predictive value

Understanding the association between the causal treatment effects on the true and surrogate endpoint is critical
to understanding the value of a surrogate from a clinical perspective [10]. Along these lines, it has been proposed
to assess surrogacy using the so-called individual causal association (ICA), defined as the association between
the individual causal treatment effects �T and �S [7, 8]. When both endpoints are continuous and normally
distributed, the ICA can be quantified using the Pearson correlation coefficient ⇢� = corr (�T ,�S) [7]. The
previous quantification has been extended to binary endpoints using the following information-theoretic measure
of association [8]

R2
H(�T,�S) =

I(�T,�S)

min [H(�T ), H(�S)]
. (1)

The term in the numerator is the so-called mutual information and it is defined as

I(�T,�S) =

1
X

i,j=�1

⇡�
ij log

 

⇡�
ij

⇡�T
i ⇡�S

j

!

.

The mutual information between both individual causal treatment effects quantifies the amount of uncertainty
in �T expected to be removed if the value of �S becomes known. Furthermore, the denominator in (1)
equals the minimum of the entropies of the individual causal treatment effects, which are defined as H(�T ) =
P1

i=�1 ⇡
�T
i log(⇡�T

i ), and H(�S) =
P1

j=�1 ⇡
�S
j log(⇡�S

j ). The concept of entropy lies at the center of
information theory and quantifies the randomness or uncertainty associated with a random variable [14, 15].
The ICA, as given in (1), can be interpreted as a measure of prediction accuracy, i.e., a measure of how
accurately one can predict the causal treatment effect on the true endpoint for a given individual, using his causal
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treatment effect on the surrogate. Indeed, R2
H(�T,�S) is invariant under one-to-one transformations and always

lies in the unit interval, taking value zero when �T and �S are independent and value one when there is a
nontrivial transformation  so that P [�T =  (�S)] = 1 [8]. Consequently, when R2

H(�T,�S) = 1 there exists a
deterministic relationship between both individual causal treatment effects, namely �T =  (�S), and �S predicts
�T without error. In addition, when R2

H(�T,�S) = 0 both individual causal treatment effects are independent
and no meaningful predictions are possible.
Even though R2

H(�T,�S) does provide a quantification of the surrogate predictive value, it does not give any
information regarding the specific form of the prediction function  and leaves some important scientific questions
unanswered. For instance, it does not allow to assess how likely it is that the treatment will have a negative impact
on the true endpoint, given that it has a beneficial effect on the surrogate, i.e., the probability that the surrogate will
produce a false positive result.
To explore these issues let us now consider a general prediction function  : {�1, 0, 1} ! {�1, 0, 1}. The
predictive value of  can be assessed using the expression

P [�T =  (�S)] =

1
X

i=�1

P (�T = i, (�S) = i) , (2)

=

1
X

i=�1

X

j2 �1(i)

P (�T = i,�S = j) ,

=

1
X

i=�1

X

j2 �1(i)

P (�T = i|�S = j)P (�S = j) ,

where  �1
(i) = {j 2 {�1, 0, 1} :  (j) = i}. The probabilities P (�S = j) do not involve the true endpoint and

can be considered an intrinsic characteristic of the surrogate-endpoint-treatment pair.
On the other hand, the function r : {�1, 0, 1}2 ! [0, 1] given by r(i, j) = P (�T = i|�S = j) fully captures the
relationship between the individual causal treatment effects on the surrogate and true endpoint in (2). We shall
denote r the surrogate predictive function (SPF), i.e., the function describing the full conditional distribution of
�T given �S. The SPF allows to address some important scientific questions that cannot be explicitly answered
only using R2

H(�T,�S). For instance, r(�1, 1) quantifies the probability that the treatment has a negative impact
on the true endpoint given that it has a beneficial impact on the surrogate, i.e., the probability that the surrogate will
produce of a false positive result. Similarly, r(1,�1) quantifies the probability that the treatment has a beneficial
impact on the true endpoint given that it has a negative impact on the surrogate or, equivalently, the probability
that the surrogate will produce a false negative result. It may be argued that r(�1, 1) = r(1,�1) ⇡ 0 is a desirable
property for a good surrogate endpoint.
The SPF is also related to concepts previously introduced in the literature, for instance, it is intrinsically related
to the concept of causal necessity proposed by Frangakis & Rubin [16]. These authors defined that S is necessary
for the effect of treatment on the outcome T , if a causal effect of treatment on T can occur only if a causal effect
of treatment on S has occurred. Essentially, causal necessity can be re-stated as r(0, 0) = 1. Another interesting
conceptual setting is obtained when P [�T = �S] = 1, i.e., the treatment has identical individual causal effects
on both endpoints. The following result fully characterizes the previous scenario using the SPF (the proof is
straightforward).

Lemma 1 Let T and S denote a binary true and surrogate endpoint respectively. Under the causal inference
model introduced in Section 2, P [�T = �S] = 1 if and only if r(i, j) = 0 for all i 6= j.
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Furthermore, there is a close relationship between the SPF and the best prediction function associated with
the distribution of �. To illustrate this let us first define the best prediction function as the function  b =

argmax P [�T =  (�S)]. The following lemma describes the relationship between the SPF and the best
prediction function (Proof provided in the the Supplementary Materials accompanying the paper)

Lemma 2 Let T and S denote a binary true and surrogate endpoint respectively. Further, let  b : {�1, 0, 1} !
{�1, 0, 1} be the function defined as

 b(j) = arg max

i
r(i, j) = arg max

i
P (�T = i|�S = j) .

If the argument function in the previous equation returns more than one value then any of them can be chosen
arbitrarily to define  b(j), in such a case  b will not be unique. The function  b is the best prediction function
associated with the distribution of �.

Although methodologically appealing, the SPF is not identifiable from the data. In the following section a two-step
procedure will be introduced to handle the identifiability issues.

3.1. Assessing the SPF

As previously stated, the SPF is not identifiable from the data and, consequently, cannot be directly estimated.
In causal inference, this type of problem is often tackled by defining a number of identifiability assumptions.
For instance, an assumption that is often used is the so-called monotonicity assumption. Under monotonicity
P (T0  T1) = P (S0  S1) = 1 so, basically, ⇡T

10 = ⇡S
10 = 0. Identifiability conditions are frequently combined

with additional modeling assumptions in order to estimate the parameters of interest. For instance, a Bayesian
modeling approach has been used to estimate the associative (AP) and dissociative (DP) proportions (the definitions
of AP and DP are given in the supplementary materials), where the unobserved potential outcomes were treated
as missing data and imputation techniques were applied [9]. Identifiability was achieved under the assumption of
monotonicity by selecting appropriate prior distributions for the unidentifiable parameters. A similar Bayesian
approach to estimate the associative proportion under different monotonicity assumptions and missing data
generating mechanisms has been proposed as well [10].
The use of identifiability conditions in this context raises some practical problems. In fact, often there is not
enough subject specific knowledge to assess the validity of the identifiability assumptions and, in general, they can
be neither proven nor disproven based on the data. It is also important to point out that these issues are intrinsic
to the use of potential outcomes and equally affect Bayesian and frequentist methods. Vansteelandt et al. [17],
and some of the references there in, offer an in-depth discussion of the identifiability problem from a frequentist
perspective.
Along the lines presented in Alonso et al. [8], we approach the identifiability problem following a two-step
procedure, and based on the distribution of the vector of potential outcomes Y . The parameter space of the
distribution of Y is given by � =

n

⇡ 2 [0, 1]
16

: 1⇡ = 1

o

, where 1 is a vector of ones, ⇡ = (⇡ijpq), ⇡ijpq =

P (T0 = i, T1 = j, S0 = p, S1 = q) and i, j, p, q = 0/1. In a first step, we geometrically characterize the subspace
�D ⇢ � compatible with the data at hand and, in a second step, study the behavior of the SPF on �D. This approach
is not aimed at estimating the true SPF, which is not identifiable, but it can better be thought of as a sensitivity
analysis. In fact, each point in �D can be conceptualized as a world compatible with ours and, therefore, the
behavior of the SPF on �D completely describes the surrogate predictive value across all scenarios compatible
with the data.
In order to characterize �D notice first that, as described in [9] and [10], the data at hand impose some restrictions
on ⇡ijpq. Indeed, the data allow identifying three probabilities P (T = t, S = s|Z) within each treatment group
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and, thus, the 16 parameters characterizing the distribution of Y are subjected to 7 restrictions, implying that 9 are
allowed to vary freely and, hence, are not identifiable from the data. The set of restrictions on ⇡ can be written as

⇡1·1· = P (T = 1, S = 1|Z = 0), ⇡·1·1 = P (T = 1, S = 1|Z = 1),

⇡1·0· = P (T = 1, S = 0|Z = 0), ⇡·1·0 = P (T = 1, S = 0|Z = 1), (3)

⇡0·1· = P (T = 0, S = 1|Z = 0), ⇡·0·1 = P (T = 0, S = 1|Z = 1),

⇡···· = 1,

with the points in the sub-indexes indicating sums over those specific sub-indexes. Further, if one defines the vector
b0 = (1,⇡1·1·,⇡1·0·,⇡·1·1,⇡·1·0,⇡0·1·,⇡·0·1), then all the identified restrictions in (3) can be written as a system of
linear equations,

A⇡ = b, (4)

with A a binary matrix (details provided in the Supplementary Materials). The hyperplane (4) geometrically
characterizes the subspace of � compatible with the data at hand, i.e., �D = {⇡ 2 � : A⇡ = b}.
In the second step, the behavior of the SPF on �D (notice that SPF: �D ! [0, 1]6) needs to be studied in order
to evaluate the surrogate predictive value across all scenarios compatible with the data. In the terminology of
Vansteelandt et al. [17], the values taken by the SPF on �D can be considered an Honestly Estimated Ignorance
Region (HEIR), because they express ignorance due to the no identifiability of ⇡.
Studying the behavior of a function on a region of an Euclidean space is a deterministic problem. However, using
graphical or analytical techniques in this scenario is rather cumbersome due to the complex dependence of the SPF
on ⇡ and the high dimensionality of the latter. We tackle these problems using a Monte Carlo approach. Monte
Carlo methods are often used for obtaining numerical solutions to problems too complicated to solve analytically,
like solving high-dimensional integrals, complex optimization problems or solving complex differential equations.
Essentially, points will be uniformly sampled on �D and the SPF will be computed for all of them. Given that
all points in �D are equally compatible with the data, the use of a uniform sampling scheme is the most natural
choice and it also guarantees that all regions on the hyperplane have the same probability of being covered by the
sampling procedure. Notice also that, in this conceptual framework, the sampling scheme should not be interpreted
as a prior distribution quantifying the likelihood of the ⇡s but merely as a fair, unbiased procedure to select some
of them to study the SPF. Similarly, the displayed histograms of the SPF should not be interpreted as a posterior
probability distribution, but as a frequency distribution useful to visualize the behavior of the SPF on �D.
To implement the sampling procedure notice that the binary matrix A in (4) has rank 7 and can be chosen so that
A = (Ar|Af ) where Ar is a full column rank matrix and Af denotes the submatrix given by the last 9 columns.
Similarly, the vector ⇡ can be partitioned as ⇡0

=

�

⇡0
r|⇡0

f

�

with ⇡f the subvector given by the last 9 components
of ⇡. Using these partitions (4) can be rewritten as Ar⇡r + Af⇡f = b (details provided in in the Supplementary
Materials). The following algorithm can then be used to sample points on �D:

1. Select a grid of values G = {g1, g2, ..., gK} in (0, 1). The specific values of the grid have to be selected in
order to guarantee numerical stability.

2. From k = 1 until K do

(a) Using the Randfixedsum algorithm [18, 19] generate the 9 components of ⇡f uniformally in the
hyperplane 10⇡f = gi.

(b) Calculate ⇡r = A�1
r (b� Af⇡f ) and ⇡0

=

�

⇡0
r|⇡0

f

�

.
(c) Repeat steps 2a and 2b M times.

3. From these K ⇥M ⇡ vectors select those with all components positive (the valid vectors ⇡ > 0).
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The distribution of the vector of individual causal effects �, given in Table 1, can then be obtained as

⇡�
�1�1 = ⇡1010, ⇡�

0�1 = ⇡0010 + ⇡1110,
⇡�
1�1 = ⇡0110, ⇡�

�10 = ⇡1000 + ⇡1011,
⇡�
�11 = ⇡1001, ⇡�

01 = ⇡0001 + ⇡1101,
⇡�
11 = ⇡0101, ⇡�

10 = ⇡0100 + ⇡0111,
⇡�
00 = ⇡0000 + ⇡0011 + ⇡1100 + ⇡1111,

(5)

and ⇡�
11 = 1� ⇡�

�1�1 � ⇡�
0�1 � ⇡�

1�1 � ⇡�
�10 � ⇡�

00 � ⇡�
10 � ⇡�

�11 � ⇡�
01. Finally, based on these values, the SPF

can be computed as r(i, j) = ⇡�
ij/⇡

�S
j with ⇡�S

j =

P

j ⇡
�
ij . The results obtained from the previous sensitivity

analysis can be summarized using the average surrogate predictive function r̄(i, j) defined as the average value of
r(i, j) across all values of ⇡km.

4. Case study

A practical problem that is frequently encountered when validating surrogate endpoints is the lack of user-
friendly software packages to conduct the analysis. The R package Surrogate, freely available at https:
//cran.r-project.org/web/packages/Surrogate/index.html, allows for the computation of
the SPF and related metrics such as ICA. For conciseness, in the present section only a summary of the main
results is given and no reference to the software is made. In the Supplementary Materials accompanying the paper
a more detailed analysis of the case study is provided and the implementation in R is discussed.

A clinical trial in Schizophrenia The data come from a clinical trial designed to compare the efficacy of
risperidone (experimental group) and haloperidol (control group) in the treatment of schizophrenic patients. A
total of N = 454 patients were treated for eight weeks and their condition was assessed using two psychiatric
rating scales. Oftentimes in psychiatry, several rating scales are available to assess a patient’s global condition.
A useful and sufficiently sensitive assessment scale is the Positive and Negative Syndrome Scale (PANSS; [20]).
PANSS consists of 30 items that provide an operationalized, drug-sensitive instrument, which is highly useful for
both typological and dimensional assessment of schizophrenia. The Brief Psychiatric Rating Scale (BPRS; [21])
is a subscale of PANSS including only 18 items. The outcome of interest was the presence of a clinically relevant
change in schizophrenic symptomatology as evaluated by the BPRS/PANSS scales. Clinically relevant change is
defined as a reduction of 20% or more in the BPRS/PANSS scores, i.e, 20% reduction in post-treatment scores
relative to baseline scores [22, 23].
Even though there is not a clear gold standard among psychiatric rating scales, in the present study PANSS is the
most complete and reliable instrument and, therefore, it will be considered the main outcome or true endpoint.
BPRS will be treated as the secondary outcome or potential surrogate endpoint. Basically, the main idea is to
evaluate if a simpler and, hence, easier to administer scale like BPRS, could be reliably used as a substitute for the
more complex PANSS scale that requires more time and expertise to be administered.

The individual causal association Four settings were considered in the analysis regarding monotonicity: i)
Monotonicity holds for T , ii) Monotonicity holds for S, iii) Monotonicity holds for S and T , and iv) Monotonicity
holds neither for S nor for T . Each of the previous settings defined a region in �D where the Monte Carlo procedure
was applied to study the behavior of R2

H and the SPF. Due to its better numerical performance, a slight variation
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of the algorithm introduced in Section 3.1 was used in the first step of the Monte Carlo procedure (details in Web
appendix and Surrogate package manual) and a total of M = 10000 vectors ⇡ were sampled in each of the previous
regions.
Table 2 summarizes the main findings and Figure 1 (second row) displays the frequency distributions of R2

H for
the different settings in the sensitivity analysis. The plots indicate that R2

H tends to take larger values in the region
where monotonicity does not hold than in the other regions of �D. Actually, the monotonicity assumption has a
major impact on the results, e.g., the mean R2

H assuming no monotonicity is more than 4 times larger than the mean
R2

H assuming monotonicity for both S and T . Notice that all vectors ⇡ in �D are compatible with the data at hand,
i.e., it is impossible to discriminate between these regions based solely on the data. However, in some situations,
domain-specific knowledge can be used to evaluate the plausibility of the different scenarios. Essentially, one wants
to use biological knowledge to evaluate how likely it is that our reality lies in one specific region of �D like, for
instance, a region where monotonicity holds. This analysis can be carried out by using causal diagrams available
in the package Surrogate. As a way of illustration let us consider the causal diagrams displayed in the first row of
Figure 1, in these diagrams the two horizontal lines depict the identifiable informational coefficients of association
between S and T in the two treatment conditions, i.e., br2h(S0, T0) = 0.51 and br2h(S1, T1) = 0.60. Essentially, these
coefficients quantify the association between the surrogate and the true endpoint in both treatment groups and can
be interpreted along the lines presented in [8].
The other four non-horizontal lines depict the medians of the unidentified informational coefficients of association
between the counterfactuals. When monotonicity is not assumed (first causal diagram), the median informational
association between the potential outcomes for the true and surrogate endpoints are small, i.e., br2h(S0, S1) =

br2h(T0, T1) = 0.10. This suggests that a patient’s outcome on BPRS/PANSS in the active control condition
(S0/T0) conveys little information on the patient’s outcome on BPRS/PANSS in the experimental treatment
condition (S1/T1). Given that the treatments under study are similar and S0, S1 (and also T0, T1) are repeated
measurements on the same patient, this weak association may be considered counter-intuitive. Further, the other
median informational associations br2h(S0, T1) = 0.11 and br2h(S1, T0) = 0.09 are also low. Since the BPRS is a
sub-scale of the more complex PANSS scale, one would also expect a certain level of association between these
potential outcomes and independence is again counter-intuitive.
When monotonicity is assumed for S alone (second causal diagram), the median informational associations
between the potential outcomes are substantially larger. For example, the median br2h(S0, S1) = br

2
h(T0, T1) = 0.67,

br2h(S0, T1) = 0.50 and br2h(S1, T0) = 0.46. As stated in the previous paragraph, this pattern of associations between
the potential outcomes seems to be more compatible with our biological expectations. Although this assessment
is only meant for illustrative purposes, a similar analysis can be done to bring expert opinion into the evaluation
process (details in the Supplementary Materials).

[Insert Figure 1 about here]

In general, the individual causal treatment effect on BRRS does not seem to convey a lot of information on the
individual causal treatment effect on PANSS. However, one may still wonder if, for example, a lack of treatment
effect on BPRS (�S = 0) may be indicative of a lack of treatment effect on PANSS as well (�T = 0). The SPF
allows to zoom in and analyze the prediction problem in more detail.

[Insert Table 2 about here]

The Surrogate Predictive Function Figures 2 and 3 summarize the behavior of the SPF under the no
monotonicity and monotonicity for S regions, using histograms. Due to space constraints, the SPF histograms that
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were obtained under the monotonicity for T and monotonicity for both S and T scenarios are not given here, but
they are provided in the Supplementary Materials. In general the results were similar to those presented below.

[Insert Figures 2 and 3 about here]

As shown in Figure 2 (bottom left figure), in the no monotonicity region, r(�1, 1) = P (�T = �1|�S = 1) does
not seem to take values larger than 0.25 (mean of r(�1, 1) = 0.0443, max = 0.2324) and, therefore, the probability
of a false positive result seems to be rather small. There is also some evidence that the probability of a false
negative result (top right figure) may be small as well, mean r(1,�1) = P (�T = 1|�S = �1) = 0.0483, but now
the range for this probability is much wider [0.0001; 0.6067], hinting on a substantial level of uncertainty due
to the unidentifiability of this parameter. It is clear from the analysis that a negative effect on BPRS seems to
mostly lead to a negative effect on PANSS, but there is a rather large level of uncertainty as the histograms of
r(�1,�1) = P (�T = �1|�S = �1) and r(0,�1) = P (�T = 0|�S = �1) clearly show.
The results displayed in the center figure offer some degree of support for causal necessity (as defined by [16]),
with mean r(0, 0) = P (�T = 0|�S = 0) = 0.8597. Thus, a lack of effect on BPRS seems to give evidence of a
lack of effect on PANSS. There is still some degree of uncertainty in this case with r(0, 0) taking values between
0.5476 and 0.9705, however, it is smaller than the one observed when the treatment had a negative impact on the
surrogate. Similar results are obtained when the treatment has a beneficial effect on BPRS (last row of the figure).
Overall, there is some evidence that r(i, i) = P (�T = i|�S = i) may be large for all i (the main diagonal in
the figure), with all means � 0.7484, all medians � 0.8251 and all modes � 0.8711. However, as the previous
discussion indicates, the lack of indentifiability introduces a substantial level of uncertainty regarding the true
value of these probabilities.
The results obtained in the scenario where monotonicity holds for S were very interesting. Notice that no results are
shown for r(i, j = �1) in this setting, as the probabilities of these events are 0 when monotonicity is assumed for
S. As it can be seen in Figure 3 (top center figure), the mean r(0, 0) = 0.9091 (max = 0.9715) and, therefore, causal
necessity seems to be largely supported, i.e., a lack of treatment effect on BPRS seems to give strong evidence of
a lack of treatment effect on PANSS. However, when there is a positive individual causal treatment effect on S

(�S = 1), there is substantial uncertainty with respect to the individual causal treatment effect on T (�T ) (see
Figure 3, second row). Indeed, the mean r(1, 1) = 0.5153 (max = 0.9247), the mean r(�1, 1) = 0.1213 (max =
0.4446) and mean r(0, 1) = 0.3633 (max = 0.7667). Thus, although a negative effect on PANSS does not seem
to be very likely when a positive effect on BPRS is observed, there is still a very large amount of uncertainty
regarding the individual causal treatment effect on PANSS in this setting, as the histograms of r(0, 1) and r(1, 1)

clearly indicate.
The previous analyses illustrate that the ICA and the SPF provide complementary and useful information for the
validation exercise. In fact, in both scenarios the ICA indicated that accurate predictions of �T using �S were
not generally possible. However, the ICA only offers a global quantification of the surrogate predictive value. In
addition to that, the SPF offers a more detailed view of the different predictions scenarios and permits to identify
the concrete situations in which the predictions may still be reasonably accurate and those situations in which they
completely fail.

5. Impact of ignoring sampling variability: A simulation study

In Section 3.1, �D was defined using the estimated components of b and the sampling variability of these estimates
was not taken into account. Although this may only be a minor issue in large clinical trials, it may induce a non-
negligible bias in small studies. In the present section, a simulation study is carried out to evaluate this issue, i.e.,

Statist. Med. 2015, 00 1–?? Copyright c� 2015 John Wiley & Sons, Ltd. www.sim.org 9
Prepared using simauth.cls



Statistics
in Medicine Alonso, Van der Elst & Meyvisch

the impact of using bb instead of b, on the assessment of the ICA and SPF.

5.1. Simulation design

Table 3 shows the two scenarios considered for the identifiable marginal probabilities contained in b. Notice that,
in both scenarios, the surrogate and true endpoint are associated in the control and treated groups. Actually, in
practice, the presence of an association between the putative surrogate and the true endpoint is often taken as a
prerequisite for surrogacy and, therefore, we did not consider settings in which both endpoints were independent.
In scenario 1 both endpoints are moderately associated with ✓ST |Z = 2.25. Scenario 2 represents the more
extreme and probably more unrealistic setting in which both endpoints are almost deterministically related in
both treatment groups, with P (T = S|Z) = 0.9 and ✓ST |Z = 81. Notice that, even though it may be unlikely in
practice, scenario 2 is still methodologically and conceptually interesting. Notice also that, given that BPRS is a
subscale of PANSS, in the case study the association between the surrogate and true endpoint is similar to the one
considered in scenario 2. Furthermore, five sample sizes were evaluated, namely, N = 50, 100, 300, 600 and 1000

patients. For each sample-size-scenario combination, 250 data sets were generated using draws from a multinomial
distribution. Thus, in total, 2, 500 data sets were obtained and in each of these data sets bb was determined.

[Insert Table 3 about here]

Finally, the ICA and SPF were assessed using b (ICAb, SPFb), i.e., the true values given in Table 3, and the
estimated values bb (ICAbb, SPFbb ) as the input for the proposed algorithm (more details in Web Appendix). The
Monte Carlo procedure was implemented using M = 50, 000 runs and assuming no monotonicity.

Main outcomes of interest: The main goal of the simulation study was the assessment of the bias
induced by replacing b by bb when analyzing the data. Therefore, the relative ICA bias, computed as
E
⇥�

ICAbb � ICAb

�

/ ICAb

⇤

was one of the studied outcomes. A similar outcome was also considered for the
SPF.

5.2. Simulation results

Table 4 displays the results obtained in both scenarios. With respect to the ICA, the results showed that the bias
induced by ignoring the sample variability is mostly negligible. Only when the sample size was rather small, i.e.,
N = 50 patients, a certain degree of bias was observed, but it never exceeded 15%. Importantly, for a sample size
smaller than the one of the case study, i.e., N = 300, the relative bias was only about 1.3% in both scenarios.
With respect to the SPF, the relative bias in scenario 1 was always less than about 4% for samples of size N = 100

and always less than 2% for samples of size N = 300 or larger. Interestingly, in scenario 2, although the relative
bias was generally small, large relatively biases were observed for r (�1, 1) and r (1, �1). For example, when
N = 300, the relative bias for these parameters was about 11%. As expected, for sample sizes larger than N = 600,
the relative bias was much smaller. Actually, for N = 1000 the relative bias was always smaller than 6%.
Summarizing, the previous results suggest that ignoring the sampling variability in bb induces a negligible bias in
the assessment of the ICA for sample sizes of N = 100 patients or larger. Additionally, the relative bias observed
when assessing the SPF could be considered generally acceptable for moderate sample sizes (N � 300), taking
values smaller than about 11% in both scenarios. However, there were some substantial differences in the relative
bias for the SPF in scenarios 1 and 2, and more simulations may be needed to examine this issue in more detail.
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[Insert Table 4 about here]

6. Accounting for the sampling variability

In the analyses presented in Section 4, the sampling variability in the estimates of the marginal probabilities
contained in b was not taken into account. For example, ⇡1·1· was fixed at its estimated value 0.4215 in each
run of the algorithm. In the previous section it was shown, via simulations, that ignoring sampling variability may
produce a relative bias as large as 11% in the estimation of some components of the SPF. To account for the
uncertainty in the estimation of ⇡1·1·, this parameter can be uniformly sampled from its corresponding confidence
interval CI95% = [0.3562; 0.4868] at each run of the Monte Carlo algorithm and a similar procedure can also be
used for the other marginal probabilities. Basically, this new version of the algorithm could be seen a second level
sensitivity analysis that takes into account, on one hand, the uncertainty emanating from the unidentifiability of the
distribution of the potential outcomes and, on the other hand, the uncertainty emanating from the estimation of its
identifiable marginal probabilities.
In the following the case study is re-analyzed using the revised version of the algorithm that takes the sampling
variability into account. In order to keep the length of the manuscript at a reasonable level, we will only present the
results for the settings where monotonicity holds neither for S nor for T (no monotonicity) and the setting where
monotonicity holds only for S. A throughout re-analysis of the case study and the corresponding implementation
in R can be found in the Web Appendix.
Overall, both analyses produced similar results in the region where monotonicity does not hold (see Table 5). In
addition, in the monotonicity for S region (see Table 6), r (0, 0) was rather high (minimum value larger than 0.77

irrespectively of the analysis) and r (1, 0), r (�1, 0) were rather low (maximum value smaller than 0.089 and 0.15

respectively) irrespectively of the analysis that was carried out. Thus, a lack of effect on BPRS (�S = 0) seems
to be indicative of a lack of effect on PANSS (�T = 0), whether the sampling variability is taken into account or
not. However, the assessment of r (i, j = 1) differed substantially in both analysis. In general, when the sampling
variability was accounted for, the measures of central tendency were larger for r (1, 1) and smaller for r (�1, 1),
r (0, 1).
Interestingly, although accounting for the sampling variability, as might be expected, often led to an increased
range (maximum-minimum) for the estimands of interest, sometimes it also led to a decrease in this range. Clearly,
further simulation studies and theoretical developments will be needed to fully understand the complex interplay
between all the involved factors like unidentifibility uncertainty and sampling uncertainty, among others. If the
results of both analyses, with and without accounting for sampling variability, coincide, then one may feel more
confident about the validity of the conclusions. However, when both methods lead to discordant results more
caution is needed. Importantly, as one would theoretically expect, the simulation study showed that for large
sample sizes both procedures deliver similar outputs and substantial differences mostly appear when the sample
size is small. One may wonder, however, whether undertaking a complex task like the validation of a surrogate
endpoint, is meaningful when only information on one, small clinical trial is available.

[Insert Tables 5 and 6 about here]
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7. Conclusions

In the preceding sections it has been shown that the SPF can add important information to the analysis based on
the ICA, a global measure of prediction accuracy recently introduced in the literature. The methodology proposed
has, however, some practical and conceptual limitations. For instance, at the conceptual level, it should be pointed
out that the proposed methodology cannot be easily classified into one of the main inferential frameworks, namely,
the frequentist, Bayesian and likelihood inferential schools. This is an important conceptual issue that affects many
other statistical procedures as well. For instance, Empirical Bayes methods are, strictly speaking, neither Bayesian
nor frequentists (they obviously do not belong to the likelihood school neither). Similarly, methods like regression
and classification trees, random forests and many other data mining algorithms cannot be classified into one of
the three main inferential frameworks, in spite of being useful prediction tools. In the manuscript we follow a
pragmatic approach and argue that a methodology that cannot be easily classified into one of the main inferential
frameworks, may still be an approximate, useful solution to a relevant problem.
At the practical level our simulation studies indicate that ignoring the sampling variability in the estimate of b may
produce moderate relative biases when assessing the SPF. A possible solution to this problem is to uniformly sample
the components of b from their corresponding confidence intervals at each run of the Monte Carlo algorithm. This
strategy is also implemented in the Surrogate package and in the Web appendix a detailed analysis of the case
study is provided using this correction.
Missing data permeate medical research. The Monte Carlo approach introduced in Section 3.1 uses the data only
to compute the sufficient statistics given in the components of b. In the presence of missing data, methods like,
for example, multiple imputation could be applied in a straightforward fashion to estimate these probabilities. In
such a situation, the reliability of the results will be limited by the validity of the assumptions made to handle the
missing observations. For instance, if classical multiple imputation is employed, then the results of the evaluation
exercise will be valid only under the assumption of missing at random.

Supplementary Material

A Web Appendix that details the analyses of the case study (using the R package Surrogate and that provides a
proof for Lemma 2 is available at the website of Statistics in Medicine.
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Table 1. Distribution of � = (�T,�S)
0.

�S

-1 0 1

�T

-1 ⇡�
�1�1 ⇡�

�10 ⇡�
�11 ⇡�T

�1

0 ⇡�
0�1 ⇡�

00 ⇡�
01 ⇡�T

0

1 ⇡�
1�1 ⇡�

10 ⇡�
11 ⇡�T

1

⇡�S
�1 ⇡�S

0 ⇡�S
1 1

Table 2. Descriptives of ICA under different monotonicity scenarios.

Monotonicity scenario Mean Median Mode SD Range
No monotonicity 0.5280 0.5475 0.5654 0.0964 [0.2352; 0.6951]

Monotonicity for T 0.2411 0.2439 0.2585 0.1309 [0.0034; 0.5599]
Monotonicity for S 0.2695 0.2633 0.2718 0.1383 [0.0219; 0.6114]

Monotonicity for S and T 0.1304 0.0858 0.0131 0.1348 [0.0001; 0.6322]

Table 3. Different scenarios (true marginal probabilities) that were used to simulate the data.

Scenario 1 Scenario 2

Z = 0 Z = 1 Z = 0 Z = 1

T T T T
0 1 0 1 0 1 0 1

S
0 0.30 0.20

S
0 0.30 0.20

S
0 0.45 0.05

S
0 0.45 0.05

1 0.20 0.30 1 0.20 0.30 1 0.05 0.45 1 0.05 0.45
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Table 4. Scenario 1: Relative bias in the estimation of R2
H and r (i, j) as a function of N .

Scenario 1
N

Parameter 50 100 300 600 1000

R2
H 0.0855 0.0352 0.0137 0.0044 �0.0032

r (1, 1) 0.0254 0.0204 0.0063 0.0027 �0.0011
r (�1, 1) �0.0677 �0.0410 �0.0127 0.0016 0.0089
r (0, 1) 0.0125 0.0061 0.0054 0.0025 0.0033
r (1, 0) 0.0482 0.0302 0.0084 �0.0017 0.0080
r (�1, 0) 0.0038 �0.0002 0.0140 0.0031 �0.0050
r (0, 0) �0.0208 �0.0111 �0.0072 0.0014 0.0010
r (1, �1) 0.0076 0.0153 0.0126 0.0054 0.0023
r (�1, �1) �0.0419 �0.0337 �0.0196 �0.0055 �0.0012
r (0, �1) 0.0356 0.0251 0.0160 0.0072 0.0055

Scenario 2
N

Parameter 50 100 300 600 1000

R2
H �0.1479 �0.0239 0.0130 0.0069 0.0047

r (1, 1) 0.0297 0.0193 0.0116 0.0047 0.0011
r (�1, 1) �0.5202 �0.3199 �0.1138 �0.0601 �0.0249
r (0, 1) 0.0321 0.0208 �0.0115 0.0030 0.0075
r (1, 0) 0.0882 0.0384 �0.0154 �0.0199 �0.0198
r (�1, 0) 0.0026 �0.0149 �0.0123 �0.0167 �0.0046
r (0, 0) �0.0086 �0.0016 0.0033 0.0042 0.0031
r (1, �1) �0.3371 �0.2254 �0.1095 �0.0743 �0.0566
r (�1, �1) �0.0043 0.0011 0.0054 0.0061 0.0070
r (0, �1) 0.1347 0.0726 0.0156 �0.0004 �0.0093
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Figure 1. Causal diagrams in the no monotonicity (top left) and monotonicity for S (top right) scenarios. Frequency distribution of the ICA under the different
monotonicity assumptions (second row).
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Figure 2. SPF, i.e., r(i, j) = P (�T = i|�S = j) assuming no monotonicity in the case study.
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Figure 3. SPF, i.e., r(i, j) = P (�T = i|�S = j) assuming monotonicity for S in the case study.
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Web Appendix to ‘Assessing a surrogate predictive value:
A causal inference approach.’

Ariel Alonso, Wim Van der Elst & Paul Meyvisch

1 Analysis of the case study

This Appendix illustrates the use of the R package Surrogate, available at CRAN (http://cran.r-project.
org/web/packages/Surrogate/), for the analysis of the case study described in Alonso et al. (2016b).

The data of the case study are introduced in Section 2 and analyzed in Section 3. The focus of the
analysis will be on two metrics. First, the individual causal association (ICA; Alonso et al., 2016a), that
offers a general quantification of the surrogate predictive value in a single index. Second, the surrogate
predictive function (SPF; Alonso et al., 2016b), which allows for a more fine-grained assessment of how
the individual causal effect on S can predict the individual causal effect on T. In Section 3, the data are
analyzed ignoring the sampling variability in the estimates of the marginal probabilites used to deifine
GD. In Section 5, this sampling variability is taken into account in the analyses. The impact of ignoring
the sampling variability on the results obtained in the sensitivity analysis is further study in Section 4
via simulations. Finally, in Section 6 some algebraic results and definitions are presented.

2 The dataset: a clinical trial in schizophrenia

The data come from a clinical trial designed to compare the efficacy of risperidone (experimental treat-
ment) and haloperidol (control treatment) in the treatment of schizophrenic patients. A total of N = 454
patients were treated for eight weeks and their condition was assessed using two psychiatric rating
scales. In psychiatry several measures can be considered to assess a patient’s global condition. A useful
and sufficiently sensitive assessment scale is the Positive and Negative Syndrome Scale (PANSS; Singh
& Kay (1975)). PANSS consists of 30 items that provide an operationalized, drug-sensitive instrument,
which is highly useful for both typological and dimensional assessment of schizophrenia. The Brief Psy-
chiatric Rating Scale (BPRS; Overall & Gorham (1962)) is a subscale of PANSS including only 18 items.
The outcome of interest was the presence of a clinically relevant change in schizophrenic symptomatol-
ogy as evaluated by the BPRS/PANSS scales. Clinically relevant change is defined as a reduction of 20%
or more in the BPRS/PANSS scores, i.e, 20% reduction in posttreatment scores relative to baseline scores
(Kane et al., 1988; Leucht et al., 2005).

The dataset (Schizo_Bin) is included in the Surrogate package. After installation of the package in R,
the following code can be used to load the package and the schizophrenia dataset in memory for the
subsequent analyses:

library(Surrogate) # load the Surrogate library

data(Schizo_Bin) # load the data

head(Schizo_Bin) # have a look at the first observations

## Id InvestId BPRS_Bin PANSS_Bin Treat
## 1 2 104 1 1 1
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## 2 6 104 0 0 -1
## 3 7 104 0 0 1
## 4 8 104 0 0 -1
## 5 14 26 1 0 -1
## 6 18 26 1 1 1

The dataset contains five variables:

• ’Id’: the identification number of the patient.

• ’InvestId’: the identification number of the treating physician.

• ’Treat’: the treatment indicator. �1 = control treatment (dose of 10 mg. of haloperidol), 1 = experi-
mental treatment (dose of 8 mg. of risperidone).

• ’BPRS_Bin’: a binary endpoint taking values: 1 = clinically meaningful change has occurred, 0 =
otherwise.

• ’PANSS_Bin’: a binary endpoint taking values: 1 = clinically meaningful change has occurred, 0 =
otherwise.

In the analyses below, it will be examined whether clinically meaningful change on BPRS, a simpler
and easier to administer scale, is an appropriate surrogate for clinically meaningful change on PANSS,
a more complex scale that requires more time and more skilled personnel for its administration. To
simplify the exposition, in the following sections the names BPRS and PANSS will be loosely used to
refer to clinically meaningful change in these scales.

3 Analysis of the case study: Implementation in R

3.1 Exploratory data analysis

The function MarginalProbs() can be used to obtain some descriptive summary measures of the data:

MarginalProbs(Dataset = Schizo_Bin, Surr = BPRS_Bin, True = PANSS_Bin, Treat = Treat)

## $Theta_T0S0
## [1] 68.541667
##
## $Theta_T1S1
## [1] 141.61039
##
## $Freq.Cont
##
## 0 1
## 0 105 12
## 1 12 94
##
## $Freq.Exp
##
## 0 1
## 0 94 7
## 1 11 116
##
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## $pi1_1_
## [1] 0.42152466
##
## $pi0_1_
## [1] 0.053811659
##
## $pi1_0_
## [1] 0.053811659
##
## $pi0_0_
## [1] 0.47085202
##
## $pi_1_1
## [1] 0.50877193
##
## $pi_1_0
## [1] 0.030701754
##
## $pi_0_1
## [1] 0.048245614
##
## $pi_0_0
## [1] 0.4122807
##
## attr(,"class")
## [1] "MarginalProbs"

In the output, the Theta_T0S0 (qT0S0) and Theta_T1S1 (qT1S1) components contain the estimated odds
ratios for S = clinically meaningful change on BPRS and T = clinically meaningful change on PANSS
in the active control and risperidone treatment groups, respectively. As it can be seen, the association
between S and T is stronger in the experimental treatment group (bqT1S1 = 141.6104) than in the control
treatment group (bqT0S0 = 68.5417).

Further, the Freq.Cont and Freq.Exp components in the output provide the frequencies for the cross-
tabulation of S versus T in the control and experimental groups. For example, Freq.Cont shows that
12 patients had S = 1 and T = 0 in the control group. Towards the end of the output, estimates
are provided for the identifiable marginal probabilities. For example, pi1_1_ provides an estimate for
p1·1· = P (T = 1, S = 1 | Z = 0) = 94/223 = 0.4215, and the other marginal probabilities are obtained
in a similar way.

3.2 Sampling GD: A Monte-Carlo procedure

The ICA and the SPF are functions of the parameters p characterizing the distribution of the vector of
potential outcomes Y. Therefore, the first step in the computation of the ICA and the SPF is the imple-
mentation of a Monte-Carlo algorithm to uniformly sample vectors p, in the region of the parametric
space that is compatible with the data, i.e., GD. In addition, one may also sample a sub-region of GD that
has a special conceptual meaning like, for instance, the sub-region of GD where monotonicity holds for
both endpoints. In the Surrogate library, samples of p can be obtained using the functions ICA.BinBin(),
ICA.BinBin.Grid.Full(), or ICA.BinBin.Grid.Sample() (for details, see the Surrogate manual). Due
to its better numerical performance, in the present work the ICA.BinBin.Grid.Sample() function will
be used.

The ICA.BinBin.Grid.Sample() function requires the user to specify the following main arguments:
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• pi1_1_=, pi0_1_=, ..., pi_0_1= : the identifiable marginal probabilities which can be obtained using
the MarginalProbs() function as shown earlier.

• Monotonicity= : the assumption that is made regarding monotonicity with:

Monotonicity=c("Surr.True.Endp"): monotonicity holds for both S and T;
Monotonicity=c("Surr.Endp") or Monotonicity=c("True.Endp"): monotonicity holds for S alone
or for T alone;
Monotonicity=c("No"): Monotonicity holds neither for S nor for T
Monotonicity=c("General"), all four monotonicity scenarios are considered.

• M= : the number of runs that are conducted, i.e., the number of p vectors that are sampled. Note
that when the Monotonicity=c("General") argument is used and thus 4 different monotonicity
settings are considered, the total number of runs that are conducted is 4 ⇤ M.

Here, a general analysis (Monotonicity=c("General")) is requested using M = 10000:

ICA <- ICA.BinBin.Grid.Sample(pi1_1_=0.4215, pi0_1_=0.0538, pi1_0_=0.0538,
pi_1_1=0.5088, pi_1_0=0.0307, pi_0_1=0.0482, Seed=1, Monotonicity=c("General"),
M=10000) #seed for reproducibility

The fitted object ICA contains the p vectors that are needed to compute ICA (Section 3.3) and SPF (see
Section 3.5). These vectors can be obtained using the command ICA$Pi.Vectors. For example, the
following code gives the first p vector:

ICA$Pi.Vectors[1:1,1:16]

## Pi_0000 Pi_0100 Pi_0010 Pi_0001 Pi_0101 Pi_1000
## 1 0.28341818 0.0016506401 0.0040114026 0.014152335 0.17167884 0.0055954769
## Pi_1010 Pi_1001 Pi_1110 Pi_1101 Pi_1011 Pi_1111
## 1 0.11927494 0.0078824721 0.010471947 0.027014743 0.015460923 0.27629219
## Pi_0110 Pi_0011 Pi_0111 Pi_1100
## 1 0.0052701051 0.01070427 0.033814223 0.013307308

3.3 The individual causal association (ICA)

The computation of ICA using the Surrogate package is straightforward. Indeed, the aforementioned
ICA.BinBin.Grid.Sample() function also computes the ICA, the odds ratios for the true endpoint T
(qT), and the odds ratios for the surrogate endpoint S (qS).

The summary() function provides descriptive statistics for these metrics across the different monotonic-
ity scenarios:

summary(ICA)

##
## Function call:
##
## ICA.BinBin.Grid.Sample(pi1_1_ = 0.4215, pi1_0_ = 0.0538, pi_1_1 = 0.5088,
## pi_1_0 = 0.0307, pi0_1_ = 0.0538, pi_0_1 = 0.0482, Monotonicity = c("General"),
## M = 10000, Seed = 1)
##
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## # Number of valid Pi vectors
## #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
##
## Total: 8024
##
## In the different montonicity scenarios:
## No True Surr SurrTrue
## 86 55 84 7799
##
##
## # Summary of results obtained in different monotonicity scenarios
## #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
##
## # R2_H results summary
## ~~~~~~~~~~~~~~~~~~~~~
##
## Mean:
## No True Surr SurrTrue
## 0.5280 0.2411 0.2695 0.1304
##
## Median:
## No True Surr SurrTrue
## 0.54752 0.24385 0.26325 0.08583
##
## Mode:
## No True Surr SurrTrue
## 0.5654 0.2585 0.2718 0.01309
##
## SD:
## No True Surr SurrTrue
## 0.09635 0.13093 0.13832 0.13484
##
## Min:
## No True Surr SurrTrue
## 2.352e-01 3.396e-03 2.187e-02 3.086e-08
##
## Max:
## No True Surr SurrTrue
## 0.6951 0.5599 0.6114 0.6322
##
##
## # Theta_T results summary
## #~~~~~~~~~~~~~~~~~~~~~~~~
##
## Mean:
## No True Surr SurrTrue
## 5.661 Inf 73.820 Inf
##
## Median:
## No True Surr SurrTrue
## 1.205 Inf 54.582 Inf
##
## SD:
## No True Surr SurrTrue
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## 12.01 NaN 61.57 NaN
##
## Min:
## No True Surr SurrTrue
## 0.0278 Inf 18.5317 Inf
##
## Max:
## No True Surr SurrTrue
## 86.5 Inf 378.8 Inf
##
##
## # Theta_S results summary
## #~~~~~~~~~~~~~~~~~~~~~~~~
##
## Mean:
## No True Surr SurrTrue
## 6.523 64.972 Inf Inf
##
## Median:
## No True Surr SurrTrue
## 1.219 56.829 Inf Inf
##
## SD:
## No True Surr SurrTrue
## 16.12 44.08 NaN NaN
##
## Min:
## No True Surr SurrTrue
## 0.01921 17.23491 Inf Inf
##
## Max:
## No True Surr SurrTrue
## 117.6 232.8 Inf Inf

The first part of the output shows the number of valid vectors p (vectors in GD) obtained in the analysis.
As it can be seen, the 40000 runs of the algorithm led to 8024 vectors p compatible with the data. These
valid vectors are subsequently used to compute R2

H , qS, and qT . For these metrics, the means, medi-
ans, mode, SD, minimum and maximum values, obtained under the different monotonicity scenarios,
are provided. The No, True, Surr, and SurrTrue labels depict the results that are obtained in the no
monotonicity, monotonicity for T alone, monotonicity for S alone, and monotonicity for both S and T
scenarios, respectively.

The largest estimates for the measures of central tendency of ICA were obtained when no monotonicity
was assumed, with bR2

H mean = 0.5280, median = 0.5475, mode = 0.5654 (SD = 0.0964, range [0.2352; 0.6951]).
Furthermore, the lowest estimates were obtained when monotonicity was assumed for both S and T,
with bR2

H mean = 0.1304, median = 0.0858, mode = 0.0131 (SD = 0.1348, range [0.0001; 0.6322]). Finally,
when monotonicity was assumed for S alone and for T alone the estimates of the measures of central
tendency lied between the previous ones.

The density functions for R2
H across different monotonicity scenarios can be obtained using the following

command:
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plot(ICA, ylim=c(0, 8))
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As it can be seen, when monotonicity is assumed for both S and T (blue line in the figure) small values
for R2

H are much more supported than large values, whereas when monotonicity is not assumed (black
line in the figure) large values received more support. When monotonicity is assumed for only one end-
point the frequency densities lie between the ones obtained in the previous two cases and, here again,
smaller values are more supported than large ones.

Assessing surrogacy under such a high level of uncertainty is obviously challenging. As the previous
analyses clearly show, the results are rather sensitive to the unverifiable monotonicity assumptions.
Nonetheless, domain specific knowledge can sometimes shed light on the plausibility of these compet-
ing assumptions. In the next section this idea is further illustrated.

3.4 Exploring the plausibility of different scenarios

Causal diagrams All the previous frequency densities emanate from vectors p that are equally com-
patible with the data at hand and, hence, the frequency densities are themselves equally compatible
with the data. Therefore, based solely on the data one cannot discriminate between the scenario in
which large values of R2

H received more support, basically the setting in which monotonicity holds for
neither endpoint, and the other scenarios in which smaller values are more supported, i.e, the settings
in which monotonicity holds for at least one endpoint.
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However, in some situations, domain specific knowledge can be used to evaluate the plausibility of
the different scenarios. The function CausalDiagramBinBin() may play an important role in this con-
text. This function shows a causal diagram that depicts the median of the informational coefficients
of association (r2

h) or odds ratios, describing the association structure for the counterfactual vector
Y = (T0, T1, S0, S1)0. The function can also be used to describe the association structure of Y in a specified
subgroup defined by the values of the ICA. The following arguments are required:

• x= : a fitted object of class ICA.BinBin.

• Values= : specifies whether the median informational coefficients of correlation (Values="Corrs")
or median odds ratios (Values="ORs") between the counterfactuals should be depicted.

• Min=, Max= : the minimum and maximum values for bR2
H that should be considered.

• Monotonicity= : the monotonicity scenario that should be considered.

• Histograms.Correlations : specifies whether histograms of the informational coefficients of as-
sociation R2

H between the counterfactuals should be provided. Defaults to Histograms.Correlations=FALSE.

For example, the following commands provide causal diagrams that depict the median informational
coefficients of association between the counterfactuals under the four different monotonicity scenarios:

CausalDiagramBinBin(x=ICA, Monotonicity="No")

## Note. The figure is based on 86 observations.

S0

S1

0.1

T0

T1

0.11

0.09

0.51

0.6

0.1

CausalDiagramBinBin(x=ICA, Monotonicity="Surr.Endp")

## Note. The figure is based on 84 observations.
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CausalDiagramBinBin(x=ICA, Monotonicity="True.Endp")

## Note. The figure is based on 55 observations.
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0.45
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0.45

CausalDiagramBinBin(x=ICA, Monotonicity="Surr.True.Endp")

## Note. The figure is based on 7799 observations.

9



S0

S1

0.67

T0

T1

0.5

0.52

0.51

0.6

0.67

In these diagrams, the two horizontal lines depict the identifiable informational coefficients of associ-
ation between S and T in the two treatment conditions, i.e., br2

h(S0, T0) = 0.51 and br2
h(S1, T1) = 0.60.

Essentially, these coefficients quantify the association between the surrogate and the true endpoint in
both treatment groups and can be interpreted along the lines presented in Alonso et al. (2016a).

The other four non-horizontal lines depict the medians of the unidentified informational coefficients of
association between the counterfactuals. When monotonicity is not assumed (first causal diagram), the
median informational association between the potential outcomes for the true and surrogate endpoints
are small, i.e., br2

h(S0, S1) = br2
h(T0, T1) = 0.10. This means that a patient’s outcome on BPRS/PANSS in

the active control condition (S0/T0)conveys little information on the patient’s outcome on BPRS/PANSS
in the experimental treatment condition (S1/T1). Given that the treatments under study are similar and
S0, S1 (and also T0, T1) are repeated measurements in the same patient, this weak association may be
considered counter-intuitive. Further, the other median informational associations br2

h(S0, T1) = 0.11
and br2

h(S1, T0) = 0.09 are also low. Since the BPRS is a sub-scale of the more complex PANSS scale, one
would also expect a certain level of association between these potential outcomes and independence is
again counter-intuitive.

When monotonicity is assumed for S alone, T alone, or for both S and T (the other three causal dia-
grams), the median informational associations between the potential outcomes are substantially larger.
For example, when monotonicity is assumed for S, the medianbr2

h(S0, S1) = br2
h(T0, T1) = 0.67,br2

h(S0, T1) =
0.50 and br2

h(S1, T0) = 0.46. As was discussed in the previous paragraph, this pattern of association be-
tween the potential outcomes seems to be more compatible with our biological expectations.

The non-horizontal lines in the causal diagrams shown above depict the median of the informational
coefficients of association. It can also be informative to explore the whole distribution of the informational
coefficients of association. These distributions can be obtained by adding the Histograms.Correlations
= TRUE argument in the CausalDiagramBinBin() function call. For example, the histograms of the in-
formational coefficients of association that are obtained in the no monotonicity scenario can be obtained
using the following command:

CausalDiagramBinBin(x=ICA, Monotonicity="No", Histograms.Correlations=TRUE)
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These figures show that most of the informational coefficients of association that are compatible with the
observed data are close to zero. It is also interesting to note that even though the medians of br2

h(S0, S1)
and br2

h(T0, T1) are always the same (as shown in the causal diagrams), their actual distributions differ
(though they are similar).

Further, a closer look to the frequency density obtained under the no monotonicity assumption can be
insightful as well. Indeed, this is the only scenario in which large values of R2

H are more supported than
small values. The following command can be used to obtain causal diagrams under the no monotonicity
scenario that are compatible with R2

H  0.50 and R2
H � 0.50:

CausalDiagramBinBin(x=ICA, Monotonicity="No", Min = 0, Max = .5)

## Note. The figure is based on 23 observations.
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CausalDiagramBinBin(x=ICA, Monotonicity="No", Min = 0.5, Max = 1)

## Note. The figure is based on 63 observations.
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As can be seen, the larger R2
H values seem to happen primarily when all the unidentifiable associations

are rather small (all br2
h  0.08). If one renders these low associations biologically implausible, then also

in this scenario small values of R2
H should be taken as more biologically meaningful.

Clearly, there will always be a certain level of subjectivity in this type of qualitative analysis and ex-
pert opinion may be of great value when interpreting the previous diagrams in order to evaluate the
biological plausibility of the different monotonicity assumptions.

Setting biologically plausible restrictions on the counterfactual correlations The function
ICA.BinBin.CounterAssum (ICA in the Binary-Binary setting where the Counterfactuals are Assumed

12



to fall within a certain range) is also useful to explore sub-regions of GD that are of special interest. The
function requires the user to specify the following main arguments:

• x= : a fitted object of class ICA.BinBin.

• r2_h_S0S1_min=, r2_h_S0S1_max= : the minimum and maximum values to be considered for
r2

h(S0, S1), and similarly for the other informational coefficients of association.

• Monotonicity= : the monotonicity scenario that should be considered.

• Type= : the type of plot that should be provided (i.e., Type=”Freq”, Type=”Density”, or Type=”All.Densities”).

For example, let us assume that, based on expert opinion, the sub-region of GD where rS0S1 > 0.5,
rS0T1 > 0.4, rT0T1 > 0.5, and rT0S1 > 0.4 is more biologically plausible. Descriptives of the R2

H values
and density plots that are obtained in the biologically more plausible and biologically less plausible
scenarios can be obtained using the following commands:

# Biologically plausible scenario

ICA.BinBin.CounterAssum(x = ICA, r2_h_S0S1_min = .5, r2_h_S0S1_max = 1,
r2_h_S0T1_min = .4, r2_h_S0T1_max = 1, r2_h_T0T1_min = .5, r2_h_T0T1_max = 1,
r2_h_T0S1_min = .4, r2_h_T0S1_max = 1, Monotonicity = "General",
Type = "Density")

##
##
## Summary measures for R2_H (in the subgroup of results where the counterfactual
## correlations fall within prespecified ranges
## ##############################################################################
##
##
## # R2_H results summary
## #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
##
## Mean (SD) R2_H: 0.1080 (0.1140) [min: 0.0000; max: 0.5521]
## Mode R2_H: 0.0119
##
## Quantiles of the R2_H distribution:
##
## 5% 10% 20% 50% 80% 90% 95%
## 0.0005571 0.0022302 0.0094113 0.0685515 0.1972203 0.2817226 0.3514906
##
##
## Note. The figure is based on 7036 observations.

13



0.0 0.1 0.2 0.3 0.4 0.5 0.6

0
2

4
6

 

RH
2

D
en
si
ty

# Biologically implausible scenario

ICA.BinBin.CounterAssum(x = ICA, r2_h_S0S1_min = 0, r2_h_S0S1_max = 0.5,
r2_h_S0T1_min = 0, r2_h_S0T1_max = 0.4, r2_h_T0T1_min = 0, r2_h_T0T1_max = 0.5,
r2_h_T0S1_min = 0, r2_h_T0S1_max = 0.4, Monotonicity = "General",
Type = "Density")

##
##
## Summary measures for R2_H (in the subgroup of results where the counterfactual
## correlations fall within prespecified ranges
## ##############################################################################
##
##
## # R2_H results summary
## #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
##
## Mean (SD) R2_H: 0.5421 (0.0742) [min: 0.2472; max: 0.6703]
## Mode R2_H: 0.5644
##
## Quantiles of the R2_H distribution:
##
## 5% 10% 20% 50% 80% 90% 95%
## 0.4176 0.4352 0.4993 0.5517 0.5909 0.6291 0.6390
##
##
## Note. The figure is based on 78 observations.
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The output shows that the bR2
H is substantially higher in the biologically less plausible scenario (bR2

H mean
= 0.5421, median = 0.5517, mode = 0.5644, and 95% of the bR2

H > 0.4176) than in the biologically more
plausible scenario (bR2

H mean = 0.1080, median = 0.0686, mode = 0.0119, and 95% of the bR2
H < 0.3515).

3.5 The surrogate predictive function (SPF)

It was observed, in Section 3.3, that monotonicity had a substantial impact on the results, i.e., ICA
tended to be substantially higher in the no monotonicity scenario compared to the scenarios where
monotonicity was assumed for S alone, for T alone, and for both S and T. The ICA, as given by R2

H ,
can be interpreted as a measure of prediction accuracy, with values close to zero indicating independent
individual causal treatment effects on S and T (no meaningful prediction can be made) and values close
to one giving evidence of a deterministic relationship between DT and DS (prediction without error).

In the following sections SPF will be estimated in the scenarios where monotonicity holds for neither
endpoint (only setting in which larger values of ICA are more supported) and when monotonicity is
valid for S alone, T alone and for both S and T (low ICA values more supported). The use of SPF in
conjunction with R2

H can help to assess the surrogate effect predictive value. In fact, while R2
H offers a

general quantification of the surrogate predictive capacity, SPF zooms in to offer a more detailed view
on how DT and DS are related.

3.5.1 Analysis in the no monotonicity scenario

The function SPF.BinBin (Surrogate Predictive Function for Binary S and Binary T) computes SPF using
the sensitivity analysis strategy proposed by Alonso et al. (2016b). The function requires the user to
specify a fitted object of class ICA.BinBin which contains the p vectors that are needed to determine SPF
(see Section 3.2). To obtain the SPF under the assumption of no monotonicity, the following commands
can be used:

ICA_No <- ICA.BinBin.Grid.Sample(pi1_1_=0.4215, pi0_1_=0.0538, pi1_0_=0.0538,
pi_1_1=0.5088, pi_1_0=0.0307, pi_0_1=0.0482, Seed=1,
Monotonicity=c("No"), M=10000) #seed for reproducibility

SPF_No <- SPF.BinBin(ICA_No)
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summary(SPF_No)

##
## Function call:
##
## SPF.BinBin(x = ICA_No)
##
##
## Total number of valid Pi vectors
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## 86
##
##
## SPF Descriptives
## ~~~~~~~~~~~~~~~~
## r_min1_min1 Mean: 0.7484; Median: 0.82509; Mode: 0.87114; SD: 0.21717
## Min: 0.058457; Max: 0.97168; 95% CI = [0.13888; 0.95012]
##
## r_0_min1 Mean: 0.2033; Median: 0.13568; Mode: 0.1034; SD: 0.18458
## Min: 0.00467; Max: 0.7679; 95% CI = [0.028757; 0.72956]
##
## r_1_min1 Mean: 0.048296; Median: 0.023475; Mode: 0.014946; SD: 0.083193
## Min: 0.0001159; Max: 0.60665; 95% CI = [0.00056563; 0.19158]
##
## r_min1_0 Mean: 0.078138; Median: 0.05819; Mode: 0.042112; SD: 0.056138
## Min: 0.0059661; Max: 0.25208; 95% CI = [0.0092982; 0.20547]
##
## r_0_0 Mean: 0.85965; Median: 0.89062; Mode: 0.91531; SD: 0.087427
## Min: 0.54755; Max: 0.97051; 95% CI = [0.63161; 0.95874]
##
## r_1_0 Mean: 0.062216; Median: 0.047302; Mode: 0.039454; SD: 0.048094
## Min: 0.0037408; Max: 0.31073; 95% CI = [0.0078327; 0.16727]
##
## r_min1_1 Mean: 0.044326; Median: 0.030975; Mode: 0.022397; SD: 0.045417
## Min: 0.00068337; Max: 0.23243; 95% CI = [0.0012776; 0.17517]
##
## r_0_1 Mean: 0.13028; Median: 0.11176; Mode: 0.079046; SD: 0.089613
## Min: 0.0044017; Max: 0.42858; 95% CI = [0.020308; 0.35413]
##
## r_1_1 Mean: 0.8254; Median: 0.84728; Mode: 0.88384; SD: 0.099755
## Min: 0.45564; Max: 0.97397; 95% CI = [0.6032; 0.94632]

A plot of the SPF histograms can be obtained by applying the plot() function to the fitted object SPF_No:

plot(SPF_No)
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The output of the summary() function shows that the 10000 runs of the algorithm led to 86 valid p
vectors, i.e., vector in the sub-region of GD where monotonicity holds neither for T nor for S. Further,
descriptives like the mean, median, and mode for each of the r(i, j) = P(DT = i|DS = j) are provided.
In addition, the output of the plot() function shows the histograms for SPF (r(i, j)). A discussion of the
output is provided in Alonso et al. (2016b).

3.5.2 Analysis in the monotonicity for S scenario

To obtain the SPF under the assumption of monotonicity for S, the following commands can be used:

ICA_S <- ICA.BinBin.Grid.Sample(pi1_1_=0.4215, pi0_1_=0.0538, pi1_0_=0.0538,
pi_1_1=0.5088, pi_1_0=0.0307, pi_0_1=0.0482, Seed=1,
Monotonicity=c("Surr.Endp"), M=10000) #seed for reproducibility

SPF_S <- SPF.BinBin(ICA_S)

summary(SPF_S)

##
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## Function call:
##
## SPF.BinBin(x = ICA_S)
##
##
## Total number of valid Pi vectors
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## 84
##
##
## SPF Descriptives
## ~~~~~~~~~~~~~~~~
## r_min1_0 Mean: 0.028009; Median: 0.024862; Mode: 0.017337; SD: 0.016733
## Min: 0.0028209; Max: 0.06698; 95% CI = [0.005466; 0.065813]
##
## r_0_0 Mean: 0.90912; Median: 0.90736; Mode: 0.9045; SD: 0.024644
## Min: 0.84563; Max: 0.9715; 95% CI = [0.85094; 0.94962]
##
## r_1_0 Mean: 0.062867; Median: 0.061211; Mode: 0.05893; SD: 0.015146
## Min: 0.020086; Max: 0.089875; 95% CI = [0.03232; 0.087476]
##
## r_min1_1 Mean: 0.12134; Median: 0.11724; Mode: 0.051222; SD: 0.090701
## Min: 0.00045333; Max: 0.44463; 95% CI = [0.0031818; 0.32532]
##
## r_0_1 Mean: 0.36332; Median: 0.34078; Mode: 0.32548; SD: 0.17894
## Min: 0.051993; Max: 0.76668; 95% CI = [0.073257; 0.72383]
##
## r_1_1 Mean: 0.51534; Median: 0.50723; Mode: 0.47828; SD: 0.18378
## Min: 0.1018; Max: 0.92469; 95% CI = [0.18044; 0.88129]

plot(SPF_S)
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Notice that the previous outputs do not show estimates for r(i, j = �1), as the probabilities of these
events are 0 when monotonicity for S is assumed. A discussion of the output is provided in Alonso et
al. (2016b).

3.5.3 SPF assuming monotonicity for T

To obtain the SPF under the assumption of monotonicity for T, the following commands can be used:

ICA_T <- ICA.BinBin.Grid.Sample(pi1_1_=0.4215, pi0_1_=0.0538, pi1_0_=0.0538,
pi_1_1=0.5088, pi_1_0=0.0307, pi_0_1=0.0482, Seed=1,
Monotonicity=c("True.Endp"), M=10000) #seed for reproducibility

SPF_T <- SPF.BinBin(ICA_T)

summary(SPF_T)

##
## Function call:
##
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## SPF.BinBin(x = ICA_T)
##
##
## Total number of valid Pi vectors
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## 55
##
##
## SPF Descriptives
## ~~~~~~~~~~~~~~~~
## r_0_min1 Mean: 0.75868; Median: 0.77398; Mode: 0.89699; SD: 0.17762
## Min: 0.087598; Max: 0.9997; 95% CI = [0.46344; 0.99292]
##
## r_1_min1 Mean: 0.24132; Median: 0.22602; Mode: 0.10301; SD: 0.17762
## Min: 0.00030333; Max: 0.9124; 95% CI = [0.0070815; 0.53656]
##
## r_0_0 Mean: 0.97411; Median: 0.97673; Mode: 0.97997; SD: 0.015363
## Min: 0.93769; Max: 0.99771; 95% CI = [0.93961; 0.99633]
##
## r_1_0 Mean: 0.025885; Median: 0.023271; Mode: 0.020026; SD: 0.015363
## Min: 0.0022875; Max: 0.062315; 95% CI = [0.0036691; 0.060389]
##
## r_0_1 Mean: 0.69919; Median: 0.6848; Mode: 0.66413; SD: 0.10829
## Min: 0.45411; Max: 0.93901; 95% CI = [0.50732; 0.90863]
##
## r_1_1 Mean: 0.30081; Median: 0.3152; Mode: 0.33587; SD: 0.10829
## Min: 0.060992; Max: 0.54589; 95% CI = [0.091367; 0.49268]

plot(SPF_T)
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In line with the results detailed in Section 3.5.2, it can be concluded that a lack of treatment effect on
S will strongly suggest a lack of treatment effect on T, however, a positive or negative impact of the
treatment on S coveys limited information on the potential effect of the treatment on T.

3.5.4 SPF assuming monotonicity for both S and T

The following commands can be used to obtain the SPF under the assumption of monotonicity for both
S and T:

ICA_ST <- ICA.BinBin.Grid.Sample(pi1_1_=0.4215, pi0_1_=0.0538, pi1_0_=0.0538,
pi_1_1=0.5088, pi_1_0=0.0307, pi_0_1=0.0482, Seed=1,
Monotonicity=c("Surr.True.Endp"), M=10000) #seed for reproducibility

SPF_ST <- SPF.BinBin(ICA_ST)
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summary(SPF_ST)

##
## Function call:
##
## SPF.BinBin(x = ICA_ST)
##
##
## Total number of valid Pi vectors
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## 7799
##
##
## SPF Descriptives
## ~~~~~~~~~~~~~~~~
## r_0_0 Mean: 0.95557; Median: 0.95451; Mode: 0.94864; SD: 0.014831
## Min: 0.93009; Max: 0.99301; 95% CI = [0.93191; 0.9851]
##
## r_1_0 Mean: 0.044435; Median: 0.045489; Mode: 0.051358; SD: 0.014831
## Min: 0.0069928; Max: 0.069907; 95% CI = [0.014903; 0.068091]
##
## r_0_1 Mean: 0.71364; Median: 0.72548; Mode: 0.79145; SD: 0.1667
## Min: 0.2928; Max: 0.99994; 95% CI = [0.38171; 0.97954]
##
## r_1_1 Mean: 0.28636; Median: 0.27452; Mode: 0.20855; SD: 0.1667
## Min: 5.7e-05; Max: 0.7072; 95% CI = [0.020461; 0.61829]

plot(SPF_ST)
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In line with the results detailed in Section 3.5.2, the results indicate that a lack of treatment effect on S is
strongly indicative of a lack of treatment effect on T, but a positive impact of the treatment on S cannot
be interpreted as strong evidence that there will also be a positive impact on T.

3.6 Additional graphical tools to explore the surrogate predictive function

When the plot() function is applied to a fitted object of class SPF.BinBin, histograms of r(i, j) are
provided by default (see previous figures). Other types of plots can also be requested (for details, see the
Surrogate package manual). For example, a histogram for a particular r(i, j) of interest, e.g., r(1, 1), can
be requested by specifying the Type=”Histogram” and Specific.Pi=”r_1_1” arguments in the plot()
call. Here, we request such a figure in the no monotonicity scenario:

plot(SPF_No, Type="Histogram", Specific.Pi="r_1_1")
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In addition, it is also possible to request box-plots for r(i, j) by using the Type="Box.Plot" argument in
the plot() call:

plot(SPF_No, Type="Box.Plot", Legend.Pos="right")
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Further, line plots and 3D plots that depict the means, medians or modes of the r(i, j) can be ob-
tained by using the Type="Lines.Mean", Type="Lines.Median", Type="Lines.Mode", Type="3D.Mean",
Type="3D.Median" or Type="3D.Mode" arguments. For example, a 3D plot of the means can be obtained
using the following command:
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plot(SPF_No, Type="3D.Mean")
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Finally, 3D spinning plots that can be freely rotated on the screen can be obtained by using the plot(SPF_No,
Type="3D.Spinning.Mean"), plot(SPF_No, Type="3D.Spinning.Median"), or
plot(SPF_No, Type="3D.Spinning.Mode") commands.

4 Impact of ignoring the sampling variability in b̂: Simulation study

4.1 Simulation design

The methodology proposed in Alonso et al. (2016b) characterizes GD using the estimated components of
b and, consequently, the sampling variability of these estimates is not taken into account. Although this
may only be a minor issue in large clinical trials, it may induce a non-negligible bias in small studies.
In the present section, a simulation study is carried out to evaluate this issue, i.e., the impact of using b

b

instead of b, on the assessment of the ICA and SPF.

Table 1 shows the two scenarios considered for the identifiable marginal probabilities contained in b.
Notice that, in both scenarios, the surrogate and true endpoint are associated in the control and treated
groups. Actually, in practice, the presence of an association between the putative surrogate and the true
endpoint is often taken as a prerequisite for surrogacy and, therefore, we did not consider settings in
which both endpoints were independent. In scenario 1 both endpoints are moderately associated with
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Table 1: Different scenarios (true marginal probabilities) that were used to simulate the data.

Scenario 1 Scenario 2
Z = 0 Z = 1 Z = 0 Z = 1

T T T T
0 1 0 1 0 1 0 1

S 0 0.30 0.20 S 0 0.30 0.20 S 0 0.45 0.05 S 0 0.45 0.05
1 0.20 0.30 1 0.20 0.30 1 0.05 0.45 1 0.05 0.45

qST|Z = 2.25. Scenario 2 represents the more extreme and probably more unrealistic setting in which
both endpoints are almost deterministically related in both treatment groups, with P(T = S|Z) = 0.9
and qST|Z = 81. Notice that, even though it may be unlikely in practice, scenario 2 is still method-
ologically and conceptually interesting. Notice also that, given that BPRS is a subscale of PANSS, in
the case study the association between the surrogate and true endpoint is similar to the one considered
in scenario 2. Furthermore, five sample sizes were evaluated, namely, N = 50, 100, 300, 600 and 1000
patients. For each sample-size-scenario combination, 250 data sets were generated using draws from a
multinomial distribution. Thus, in total, 2, 500 data sets were obtained and in each of these data sets b

b

was determined.

Finally, the ICA and SPF were assessed using b (ICA
b

, SPF
b

), i.e., the true values given in Table 1,
and the estimated values b

b (ICAb
b

, SPFb
b

) as the input for the proposed algorithm. The Monte Carlo
procedure was implemented using M = 50, 000 runs and assuming no monotonicity.

Main outcomes of interest: The main goal of the simulation study was the assessment of the bias
induced by replacing b by b

b when analyzing the data. Therefore, the relative ICA bias, computed as
E
⇥�

ICAb
b

� ICA
b

�
/ ICA

b

⇤
was one of the studied outcomes. A similar outcome was also considered

for the SPF.

4.2 Simulation results

Tables 2 and 3 display the results obtained in scenarios 1 and 2, respectively. With respect to the ICA,
the results showed that the biased induced by ignoring the sample variability is mostly negligible. Only
when the sample size was rather small, i.e., N = 50 patients, certain degree of bias was observed, but it
never exceeded 15%. Importantly, for a sample size smaller than the one of the case study, i.e., N = 300,
the relative bias was only about 1.3% in both scenarios.

With respect to the SPF, the relative bias in scenario 1 was always less than about 4% for samples of size
N = 100 and always less than 2% for samples of size N = 300 or larger. Interestingly, in scenario 2,
although the relative bias was generally small, for r (�1, 1) and r (1, �1) large relatively biases were
observed. For example, when N = 300, the relative bias for these values was about 11%. As expected,
for sample sizes larger than N = 600, the relative bias was much smaller. Actually, for N = 1000 the
relative bias was always smaller than 6%.

Summarizing, the previous results suggest that ignoring the sampling variability in b
b induces a negli-

gible bias in the assessment of the ICA for sample sizes of N = 100 patients or larger. Additionally, the
relative bias observed when assessing the SPF could be considered generally acceptable for moderate
sample sizes (N � 300), taking values smaller than about 11% in both scenarios. However, there were
some substantial differences in the relative bias for the SPF in scenarios 1 and 2, and more simulations
may be needed to examine this issue in more detail.

Of course, in the analysis of a real-life case study, the approach detailed in Section 5 can always be used
to account for the sampling variability in b

b.
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Table 2: Scenario 1: Relative bias in the estimation of R2
H and r (i, j) as a function of N.

N
Parameter 50 100 300 600 1000

R2
H 0.0855 0.0352 0.0137 0.0044 �0.0032

r (1, 1) 0.0254 0.0204 0.0063 0.0027 �0.0011
r (�1, 1) �0.0677 �0.0410 �0.0127 0.0016 0.0089
r (0, 1) 0.0125 0.0061 0.0054 0.0025 0.0033
r (1, 0) 0.0482 0.0302 0.0084 �0.0017 0.0080

r (�1, 0) 0.0038 �0.0002 0.0140 0.0031 �0.0050
r (0, 0) �0.0208 �0.0111 �0.0072 0.0014 0.0010

r (1, �1) 0.0076 0.0153 0.0126 0.0054 0.0023
r (�1, �1) �0.0419 �0.0337 �0.0196 �0.0055 �0.0012
r (0, �1) 0.0356 0.0251 0.0160 0.0072 0.0055

Table 3: Scenario 2: Relative bias in the estimation of R2
H and r (i, j) as a function of N

N
Parameter 50 100 300 600 1000

R2
H �0.1479 �0.0239 0.0130 0.0069 0.0047

r (1, 1) 0.0297 0.0193 0.0116 0.0047 0.0011
r (�1, 1) �0.5202 �0.3199 �0.1138 �0.0601 �0.0249
r (0, 1) 0.0321 0.0208 �0.0115 0.0030 0.0075
r (1, 0) 0.0882 0.0384 �0.0154 �0.0199 �0.0198

r (�1, 0) 0.0026 �0.0149 �0.0123 �0.0167 �0.0046
r (0, 0) �0.0086 �0.0016 0.0033 0.0042 0.0031

r (1, �1) �0.3371 �0.2254 �0.1095 �0.0743 �0.0566
r (�1, �1) �0.0043 0.0011 0.0054 0.0061 0.0070
r (0, �1) 0.1347 0.0726 0.0156 �0.0004 �0.0093
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5 Accounting for the sampling variability in the estimates of the

marginal probabilities

In the analyses presented in Section 3, the sampling variability in the estimates of the marginal proba-
bilities contained in b was not taken into account. For example, p1·1· was fixed at its estimated value
0.4215 in each run of the ICA.BinBin.Grid.Sample() function. To account for the uncertainty in the
estimation of p1·1·, this parameter can be uniformly sampled from its corresponding confidence interval
CI95% = [0.3562; 0.4868] at each run of the Monte Carlo algorithm and a similar procedure can also
be used for the other marginal probabilities. Obviously, the previous sampled components of b are
restricted to sum less than one.

The function ICA.BinBin.Grid.Sample.Uncert() implements this approach. The following commands
can be used to assess the SPF while accounting for the sampling variability in bb under the assumption
of no monotonicity:

ICA_No2 <- ICA.BinBin.Grid.Sample.Uncert(pi1_1_=runif(10000, 0.3562, 0.4868),
pi0_1_=runif(10000, 0.0240, 0.0837), pi1_0_=runif(10000, 0.0240, 0.0837),
pi_1_1=runif(10000, 0.4434, 0.5742), pi_1_0=runif(10000, 0.0081, 0.0533),
pi_0_1=runif(10000, 0.0202, 0.0763), Seed=1, Monotonicity=c("No"), M=10000)

SPF_No2 <- SPF.BinBin(ICA_No2)

Notice that the commands used here are similar to those employed in Section 3, being the only differ-
ence that the point estimates for the marginals (e.g., pi1_1_=0.4215) are now replaced by uniform dis-
tributions (e.g., pi1_1_=runif(10000, 0.3562, 0.4868))) in the ICA.BinBin.Grid.Sample.Uncert()
function call. The fitted objects can subsequently be examined in the same way as was done in Section
3, e.g., the summary() and plot() functions can be applied to the fitted objects.

Figures 1–4 show the frequency densities for the SPF that were obtained when the sampling variability
was (right figures) and was not (left figures) taken into account in the no monotonicity, monotonicity
for S, monotonicity for T, and monotonicity for S and T regions. In addition, Tables 4–7 provide the
corresponding summary statistics.

Overall, both analyses produced very similar results in the region where monotonicity does not hold
(see Figure 1 and Table 4). In the monotonicity for S, T and both S and T regions, both analyses produce
a very similar assessment for r (i, j = 0), i.e., in all monotonicity scenarios r (0, 0) tended to be high and
r (1, 0), r (�1, 0) tended to be low. Thus, a lack of effect on BPRS (DS = 0) seems to be indicative of a
lack of effect on PANSS (DT = 0) in all monotonicity scenarios, whether sampling variability is taken
into account or not. However, the assessment of r (i, j = 1) differed in both analysis. In general, when
the sampling variability was accounted for, the measures of central tendency were larger for r (1, 1) and
smaller for r (�1, 1), r (0, 1).

In the monotonicity for T region, the assessment of r (i, j = �1) also seems to differ in both analysis. For
example, the mean r (0,�1) = 0.7587 and r (1,�1) = 0.2413 when sampling variability is not accounted
for, and the mean r (0,�1) = 0.9345 and r (1,�1) = 0.0655 when sampling variability is accounted for.

28



Sa
m

pl
in

g
va

ri
ab

ili
ty

m
ar

gi
na

ls
no

ta
cc

ou
nt

ed
fo

r
Sa

m
pl

in
g

va
ri

ab
ili

ty
m

ar
gi

na
ls

ac
co

un
te

d
fo

r
M

ea
n

M
ed

ia
n

M
od

e
SD

[m
in

;m
ax
]

M
ea

n
M

ed
ia

n
M

od
e

SD
[m

in
;m

ax
]

r(
�

1,
�

1)
0.

74
84

0.
82

51
0.

87
11

0.
21

72
[0

.0
58

5;
0.

97
17
]

0.
80

50
0.

83
59

0.
86

48
0.

13
47

[0
.0

08
7;

0.
99

30
]

r(
0,

�
1)

0.
20

33
0.

13
57

0.
10

34
0.

18
46

[0
.0

04
7;

0.
76

79
]

0.
17

48
0.

14
63

0.
11

38
0.

12
72

[0
.0

03
3;

0.
92

32
]

r(
1,

�
1)

0.
04

83
0.

02
35

0.
01

50
0.

08
32

[0
.0

00
1;

0.
60

67
]

0.
02

02
0.

01
61

0.
00

63
0.

01
90

[0
.0

00
1;

0.
21

34
]

r(
�

1,
0)

0.
07

81
0.

05
82

0.
04

21
0.

05
61

[0
.0

06
0;

0.
25

21
]

0.
10

77
0.

09
07

0.
05

45
0.

07
53

[0
.0

00
8;

0.
71

85
]

r(
0,

0)
0.

85
97

0.
89

06
0.

91
53

0.
08

74
[0

.5
47

6;
0.

97
05
]

0.
80

43
0.

83
57

0.
87

33
0.

11
55

[0
.0

59
9;

0.
99

30
]

r(
1,

0)
0.

06
22

0.
04

73
0.

03
95

0.
04

81
[0

.0
03

7;
0.

31
07
]

0.
08

80
0.

07
36

0.
05

86
0.

06
06

[0
.0

02
3;

0.
54

38
]

r(
�

1,
1)

0.
04

43
0.

03
10

0.
02

24
0.

04
54

[0
.0

00
7;

0.
23

24
]

0.
03

12
0.

02
74

0.
00

93
0.

02
30

[0
.0

00
1;

0.
15

93
]

r(
0,

1)
0.

13
03

0.
11

18
0.

07
90

0.
08

96
[0

.0
04

4;
0.

42
87
]

0.
12

61
0.

11
08

0.
09

20
0.

06
73

[0
.0

03
9;

0.
50

64
]

r(
1,

1)
0.

82
54

0.
84

73
0.

88
38

0.
09

98
[0

.4
55

6;
0.

97
40
]

0.
84

72
0.

85
85

0.
88

78
0.

07
28

[0
.4

71
5;

0.
99

39
]

Ta
bl

e
4:

SP
F

su
m

m
ar

y
st

at
is

tic
s

un
de

r
th

e
no

m
on

ot
on

ic
ity

as
su

m
pt

io
n

w
he

n
th

e
sa

m
pl

in
g

va
ri

ab
ili

ty
in

th
e

m
ar

gi
na

lp
ro

ba
bi

lit
ie

s
is

no
ta

cc
ou

nt
ed

fo
r

(le
ft

)a
nd

is
ac

co
un

te
d

fo
r

(r
ig

ht
)

29



Sa
m

pl
in

g
va

ri
ab

ili
ty

m
ar

gi
na

ls
no

ta
cc

ou
nt

ed
fo

r
Sa

m
pl

in
g

va
ri

ab
ili

ty
m

ar
gi

na
ls

ac
co

un
te

d
fo

r
M

ea
n

M
ed

ia
n

M
od

e
SD

[m
in

;m
ax
]

M
ea

n
M

ed
ia

n
M

od
e

SD
[m

in
;m

ax
]

r(
�

1,
0)

0.
02

81
0.

02
49

0.
01

73
0.

01
67

[0
.0

02
8;

0.
06

70
]

0.
07

68
0.

07
75

0.
08

65
0.

03
47

[0
.0

24
9;

0.
14

86
]

r(
0,

0)
0.

90
91

0.
90

74
0.

90
45

0.
02

46
[0

.8
45

6;
0.

97
15
]

0.
87

74
0.

88
32

0.
89

28
0.

04
55

[0
.7

70
7;

0.
93

61
]

r(
1,

0)
0.

06
29

0.
06

12
0.

05
89

0.
01

51
[0

.0
20

1;
0.

08
99
]

0.
04

59
0.

04
44

0.
04

02
0.

01
77

[0
.0

13
9;

0.
08

07
]

r(
�

1,
1)

0.
12

13
0.

11
72

0.
05

12
0.

09
07

[0
.0

00
5;

0.
44

46
]

0.
03

57
0.

03
33

0.
03

60
0.

02
88

[0
.0

00
5;

0.
10

51
]

r(
0,

1)
0.

36
33

0.
34

08
0.

32
55

0.
17

89
[0

.0
52

0;
0.

76
67
]

0.
14

44
0.

14
42

0.
10

39
0.

07
02

[0
.0

32
6;

0.
28

98
]

r(
1,

1)
0.

51
53

0.
50

72
3

0.
47

83
0.

18
38

[0
.1

01
8;

0.
92

47
]

0.
81

99
0.

80
30

0.
76

32
0.

07
26

[0
.7

03
4;

0.
95

41
]

Ta
bl

e
5:

SP
F

su
m

m
ar

y
st

at
is

tic
su

nd
er

th
e

m
on

ot
on

ic
ity

fo
rS

as
su

m
pt

io
n

w
he

n
th

e
sa

m
pl

in
g

va
ri

ab
ili

ty
in

th
e

m
ar

gi
na

lp
ro

ba
bi

lit
ie

si
sn

ot
ac

co
un

te
d

fo
r

(le
ft

)a
nd

is
ac

co
un

te
d

fo
r

(r
ig

ht
)

30



Sa
m

pl
in

g
va

ri
ab

ili
ty

m
ar

gi
na

ls
no

ta
cc

ou
nt

ed
fo

r
Sa

m
pl

in
g

va
ri

ab
ili

ty
m

ar
gi

na
ls

ac
co

un
te

d
fo

r
M

ea
n

M
ed

ia
n

M
od

e
SD

[m
in

;m
ax
]

M
ea

n
M

ed
ia

n
M

od
e

SD
[m

in
;m

ax
]

r(
0,

�
1)

0.
75

87
0.

77
40

0.
89

70
0.

17
76

[0
.0

87
6;

0.
99

97
]

0.
93

45
0.

95
35

0.
97

36
0.

06
64

[0
.6

93
6;

0.
99

89
]

r(
1,

�
1)

0.
24

13
0.

22
60

0.
10

30
0.

17
76

[0
.0

00
3;

0.
91

24
]

0.
06

55
0.

04
65

0.
02

64
0.

06
64

[0
.0

01
1;

0.
30

64
]

r(
0,

0)
0.

97
41

0.
97

67
0.

98
00

0.
01

54
[0

.9
37

7;
0.

99
77
]

0.
97

08
0.

97
27

0.
97

47
0.

01
31

[0
.9

29
2;

0.
99

78
]

r(
1,

0)
0.

02
59

0.
02

33
0.

02
00

0.
01

54
[0

.0
02

3;
0.

06
23
]

0.
02

92
0.

02
73

0.
02

54
0.

01
31

[0
.0

02
2;

0.
07

08
]

r(
0,

1)
0.

69
92

0.
68

48
0.

66
41

0.
10

83
[0

.4
54

1;
0.

93
90
]

0.
46

38
0.

43
90

0.
42

75
0.

16
39

[0
.1

75
1;

0.
85

78
]

r(
1,

1)
0.

30
08

0.
31

52
0.

33
59

0.
10

83
[0

.0
61

0;
0.

54
59
]

0.
53

62
0.

56
11

0.
57

26
0.

16
39

[0
.1

42
2;

0.
82

49
]

Ta
bl

e
6:

SP
F

su
m

m
ar

y
st

at
is

tic
su

nd
er

th
e

m
on

ot
on

ic
ity

fo
rT

as
su

m
pt

io
n

w
he

n
th

e
sa

m
pl

in
g

va
ri

ab
ili

ty
in

th
e

m
ar

gi
na

lp
ro

ba
bi

lit
ie

si
sn

ot
ac

co
un

te
d

fo
r

(le
ft

)a
nd

is
ac

co
un

te
d

fo
r

(r
ig

ht
)

31



Sa
m

pl
in

g
va

ri
ab

ili
ty

m
ar

gi
na

ls
no

ta
cc

ou
nt

ed
fo

r
Sa

m
pl

in
g

va
ri

ab
ili

ty
m

ar
gi

na
ls

ac
co

un
te

d
fo

r
M

ea
n

M
ed

ia
n

M
od

e
SD

[m
in

;m
ax
]

M
ea

n
M

ed
ia

n
M

od
e

SD
[m

in
;m

ax
]

r(
0,

0)
0.

95
56

0.
95

45
0.

94
86

0.
01

48
[0

.9
30

1;
0.

99
30
]

0.
95

52
0.

95
54

0.
96

21
0.

01
74

[0
.9

08
3;

0.
99

83
]

r(
1,

0)
0.

04
44

0.
04

55
0.

05
14

0.
01

48
[0

.0
07

0;
0.

07
00
]

0.
04

48
0.

04
46

0.
03

80
0.

01
74

[0
.0

01
7;

0.
09

17
]

r(
0,

1)
0.

71
36

0.
72

55
0.

79
15

0.
16

67
[0

.2
92

8;
0.

99
99
]

0.
58

73
0.

57
48

0.
49

88
0.

20
43

[0
.1

03
9;

0.
99

99
]

r(
1,

1)
0.

28
64

0.
27

45
0.

20
86

0.
16

67
[0

.0
00

1;
0.

70
72
]

0.
41

27
0.

42
53

0.
50

12
0.

20
43

[0
.0

00
1;

0.
89

62
]

Ta
bl

e
7:

SP
F

su
m

m
ar

y
st

at
is

tic
s

un
de

r
th

e
m

on
ot

on
ic

ity
fo

r
S

an
d

T
as

su
m

pt
io

n
w

he
n

th
e

sa
m

pl
in

g
va

ri
ab

ili
ty

in
th

e
m

ar
gi

na
lp

ro
ba

bi
lit

ie
s

is
no

t
ac

co
un

te
d

fo
r

(le
ft

)a
nd

is
ac

co
un

te
d

fo
r

(r
ig

ht
)

32



0.
0

0.
4

0.
8

0123

 

r(
−

1,
 −

1)

Density

∆
T 

= 
−1

∆S = −1

0.
0

0.
4

0.
8

01234

 

r(
0,

 −
1)

Density

∆
T 

= 
0

0.
0

0.
4

0.
8

051015

 

r(
1,

 −
1)

Density

∆
T 

= 
1

0.
0

0.
4

0.
8

02468

 

r(
−

1,
 0

)

Density

∆S = 0

0.
0

0.
4

0.
8

012345

 

r(
0,

 0
)

Density

0.
0

0.
4

0.
8

051015

 

r(
1,

 0
)

Density

0.
0

0.
4

0.
8

0246812

 

r(
−

1,
 1

)

Density

∆S = 1

0.
0

0.
4

0.
8

012345

 

r(
0,

 1
)

Density

0.
0

0.
4

0.
8

01234

 

r(
1,

 1
)

Density

0.
0

0.
4

0.
8

01234

 

r(
−

1,
 −

1)

Density

∆
T 

= 
−1

∆S = −1

0.
0

0.
4

0.
8

01234

 

r(
0,

 −
1)

Density

∆
T 

= 
0

0.
0

0.
4

0.
8

051525

 

r(
1,

 −
1)

Density

∆
T 

= 
1

0.
0

0.
4

0.
8

0246

 

r(
−

1,
 0

)

Density

∆S = 0

0.
0

0.
4

0.
8

012345

 

r(
0,

 0
)

Density

0.
0

0.
4

0.
8

0246810

 

r(
1,

 0
)

Density

0.
0

0.
4

0.
8

051015

 

r(
−

1,
 1

)
Density

∆S = 1
0.

0
0.

4
0.

8

0123456

 

r(
0,

 1
)

Density

0.
0

0.
4

0.
8

0123456

 

r(
1,

 1
)

Density

Fi
gu

re
1:

SP
F

de
ns

iti
es

un
de

r
th

e
no

m
on

ot
on

ic
ity

as
su

m
pt

io
n

w
he

n
th

e
sa

m
pl

in
g

va
ri

ab
ili

ty
in

th
e

m
ar

gi
na

lp
ro

ba
bi

lit
ie

s
is

no
ta

cc
ou

nt
ed

fo
r

(le
ft

pl
ot

)a
nd

is
ac

co
un

te
d

fo
r

(r
ig

ht
pl

ot
)

33



 

∆
T 

= 
−1

∆S = −1

 

∆
T 

= 
0

 

∆
T 

= 
1

0.
0

0.
4

0.
8

05101520

 

r(
−

1,
 0

)

Density

∆S = 0

0.
0

0.
4

0.
8

051015

 

r(
0,

 0
)

Density

0.
0

0.
4

0.
8

0510152025

 

r(
1,

 0
)

Density

0.
0

0.
4

0.
8

01234

 

r(
−

1,
 1

)

Density

∆S = 1

0.
0

0.
4

0.
8

0.00.51.01.52.0

 

r(
0,

 1
)

Density

0.
0

0.
4

0.
8

0.00.51.01.52.0

 

r(
1,

 1
)

Density

 

∆
T 

= 
−1

∆S = −1

 

∆
T 

= 
0

 

∆
T 

= 
1

0.
0

0.
4

0.
8

0246810

 

r(
−

1,
 0

)

Density

∆S = 0

0.
0

0.
4

0.
8

0246

 

r(
0,

 0
)

Density

0.
0

0.
4

0.
8

05101520

 

r(
1,

 0
)

Density

0.
0

0.
4

0.
8

051015

 

r(
−

1,
 1

)
Density

∆S = 1
0.

0
0.

4
0.

8

01234

 

r(
0,

 1
)

Density

0.
0

0.
4

0.
8

01234

 

r(
1,

 1
)

Density

Fi
gu

re
2:

SP
F

de
ns

iti
es

un
de

rt
he

m
on

ot
on

ic
ity

fo
rS

as
su

m
pt

io
n

w
he

n
th

e
sa

m
pl

in
g

va
ri

ab
ili

ty
in

th
e

m
ar

gi
na

lp
ro

ba
bi

lit
ie

s
is

no
ta

cc
ou

nt
ed

fo
r(

le
ft

pl
ot

)a
nd

is
ac

co
un

te
d

fo
r

(r
ig

ht
pl

ot
)

34



 

∆
T 

= 
−1

∆S = −1

0.
0

0.
4

0.
8

0.00.51.01.52.0

 

r(
0,

 −
1)

Density

∆
T 

= 
0

0.
0

0.
4

0.
8

0.00.51.01.52.0

 

r(
1,

 −
1)

Density

∆
T 

= 
1

 

∆S = 0

0.
0

0.
4

0.
8

0510152025

 

r(
0,

 0
)

Density

0.
0

0.
4

0.
8

0510152025

 

r(
1,

 0
)

Density

 

∆S = 1

0.
0

0.
4

0.
8

01234

 

r(
0,

 1
)

Density

0.
0

0.
4

0.
8

01234

 

r(
1,

 1
)

Density

 

∆
T 

= 
−1

∆S = −1

0.
0

0.
4

0.
8

02468

 

r(
0,

 −
1)

Density

∆
T 

= 
0

0.
0

0.
4

0.
8

02468

 

r(
1,

 −
1)

Density

∆
T 

= 
1

 

∆S = 0

0.
0

0.
4

0.
8

051525

 

r(
0,

 0
)

Density

0.
0

0.
4

0.
8

051525

 

r(
1,

 0
)

Density

 

∆S = 1
0.

0
0.

4
0.

8

0.01.02.0

 

r(
0,

 1
)

Density

0.
0

0.
4

0.
8

0.01.02.0

 

r(
1,

 1
)

Density

Fi
gu

re
3:

SP
F

de
ns

iti
es

un
de

rt
he

m
on

ot
on

ic
ity

fo
r

T
as

su
m

pt
io

n
w

he
n

th
e

sa
m

pl
in

g
va

ri
ab

ili
ty

in
th

e
m

ar
gi

na
lp

ro
ba

bi
lit

ie
s

is
no

ta
cc

ou
nt

ed
fo

r(
le

ft
pl

ot
)a

nd
is

ac
co

un
te

d
fo

r
(r

ig
ht

pl
ot

)

35



 

∆
T 

= 
−1

∆S = −1

 

∆
T 

= 
0

 

∆
T 

= 
1

 

∆S = 0

0.
0

0.
4

0.
8

05101520

 

r(
0,

 0
)

Density

0.
0

0.
4

0.
8

05101520

 

r(
1,

 0
)

Density

 

∆S = 1

0.
0

0.
4

0.
8

0.00.51.01.52.0

 

r(
0,

 1
)

Density

0.
0

0.
4

0.
8

0.00.51.01.52.0

 

r(
1,

 1
)

Density

 

∆
T 

= 
−1

∆S = −1

 

∆
T 

= 
0

 

∆
T 

= 
1

 

∆S = 0

0.
0

0.
4

0.
8

05101520

 

r(
0,

 0
)

Density

0.
0

0.
4

0.
8

05101520

 

r(
1,

 0
)

Density

 

∆S = 1
0.

0
0.

4
0.

8

0.00.51.01.5

 

r(
0,

 1
)

Density

0.
0

0.
4

0.
8

0.00.51.01.5

 

r(
1,

 1
)

Density

Fi
gu

re
4:

SP
F

de
ns

iti
es

un
de

r
th

e
m

on
ot

on
ic

ity
fo

r
S

an
d

T
as

su
m

pt
io

n
w

he
n

th
e

sa
m

pl
in

g
va

ri
ab

ili
ty

in
th

e
m

ar
gi

na
lp

ro
ba

bi
lit

ie
s

is
no

ta
cc

ou
nt

ed
fo

r
(le

ft
pl

ot
)a

nd
is

ac
co

un
te

d
fo

r
(r

ig
ht

pl
ot

)

36



6 Algebraic developments and definitions

Geometrically characterizing GD

The distribution of Y can be tabulated as in Table 8 and the set of restrictions on p can be written as

p1·1· = P(T = 1, S = 1|Z = 0), p·1·1 = P(T = 1, S = 1|Z = 1),

p1·0· = P(T = 1, S = 0|Z = 0), p·1·0 = P(T = 1, S = 0|Z = 1), (1)

p0·1· = P(T = 0, S = 1|Z = 0), p·0·1 = P(T = 0, S = 1|Z = 1),

p···· = 1,

with the points in the sub-indexes indicating sums over those specific sub-indexes. Further, if one de-
fines the vector b0 = (1, p1·1·, p1·0·, p·1·1, p·1·0, p0·1·, p·0·1), and the matrix

A =

0

BBBBBBBB@

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 1 0 1 0 1 1 0 0 0 0
0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0 1 0 1 0 0 1 0
0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 1
0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 0
0 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0

1

CCCCCCCCA

,

then all the identified restrictions given in (1) can be written as a system of linear equations,

Ap = b, (2)

where the vector of parameters p is ordered as in Table 8. The hyperplane given in (2) geometrically
characterizes the subspace of G compatible with the data at hand, i.e., GD = {p 2 G : Ap = b}. The
matrix A has rank 7 and can be partitioned as A =

⇣
Ar|A f

⌘
where A f denotes the submatrix given by

the last 9 columns of A and Ar is a full column rank matrix. Similarly, the vector p can be partitioned
as p0 =

⇣
p0

r|p0
f

⌘
with p f the subvector given by the last 9 components of p. Using these partitions (2)

can be rewritten as Arpr + A f p f = b.

Proof of Lemma 2. Let us consider a general function y : {�1, 0, 1} ! {�1, 0, 1}, we want to find the
function yb that maximizes the probability

P [DT = y(DS)] =
1

Â
i=�1

P (DT = i, y(DS) = i) , (3)

=
1

Â
i=�1

Â
j2y�1(i)

P (DT = i, DS = j) ,

=
1

Â
i=�1

Â
j2y�1(i)

P (DT = i|DS = j) P (DS = j) ,

where y�1(i) = {j 2 {�1, 0, 1} : y(j) = i}. If P (DS = j) = 0 then P (DT = i|DS = j) does not con-
tribute to the probability P [DT = y(DS)] and, hence, one can focus only on the support of DS. Without
loss of generality, let us assume that P (DS = j) > 0 for all j. Basically, y can be thought of as a cor-
respondence between the column numbers and the row numbers of the distribution of D, i.e., between
the column and row numbers of table 1 in the manuscript, where every column number j gets mapped
into one and only one row number i. Therefore, defining a function y is equivalent to choosing 3 cells
in table 1, each of them located in a different column. Consequently, maximizing P [DT = y(DS)] is
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Table 8: Distribution of Y

p T0 T1 S0 S1
p0000 0 0 0 0
p0100 0 1 0 0
p0010 0 0 1 0
p0001 0 0 0 1
p0101 0 1 0 1
p1000 1 0 0 0
p1010 1 0 1 0
p1001 1 0 0 1
p1110 1 1 1 0
p1101 1 1 0 1
p1011 1 0 1 1
p1111 1 1 1 1
p0110 0 1 1 0
p0011 0 0 1 1
p0111 0 1 1 1
p1100 1 1 0 0

equivalent to maximizing the sum of the corresponding cells probabilities in each column or, in other
words, maximizing P (DT = i|DS = j) for j = �1, 0, 1 and, thus,

yb(j) = arg max
i

r(i, j) = arg max
i

P (DT = i|DS = j)

Associative and dissociative proportions

Frangakis and Rubin (2002) introduced a principal stratification approach to evaluate surrogacy and sug-
gested that the quality of a surrogate should be assessed based on the size of its associative effect (AE)
relative to its dissociative effect (DE). The effect is associative if the causal treatment effect on T is reflected
on the causal treatment effect on S, otherwise it is dissociative. A good surrogate is expected to have a
large AE, indicating that the causal treatment effect on the surrogate is highly associated with the causal
treatment effect on the true endpoint. Similarly, a good surrogate is expected to have a small DE, indi-
cating that the causal treatment effect on the true endpoint is small when the causal treatment effect on
the surrogate is zero (Li, Taylor and Elliott, 2010; Elliott, Li and Taylor, 2013).

Using the notation in Table 1 in Alonso et al. (2016b), the definitions given in Elliott, Li and Taylor (2013)
take the form: AE =

�
pD

11 � pD
�11

�
+

�
pD

1�1 � pD
�1�1

�
, i.e., AE is the net treatment effect on patients

whose surrogate was responsive to the treatment. Furthermore, DE = pD
10 � pD

�10, i.e., DE is the net
treatment effect on patients whose surrogate was not responsive to the treatment. Finally, the causal
treatment effect on the true endpoint is defined as CET = pDT

1 � pDT
�1 , i.e., the net treatment effect

corresponding to the fraction responsive to the treatment minus the fraction harmed. Because AE and
DE are constrained to sum CET, Taylor, Wang and Thıébaut (2005) proposed to use instead the so-
called associative (AP = AC/CET) and dissociative (DP = DE/CET) proportions respectively. A good
surrogate is then expected to have a large AP and a small DP. Using some theoretical elements Alonso
et al. (2016a) showed that, at least in some scenarios, the ICA may offer a more coherent assessment of
surrogacy than the AP and DP.
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