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Pharmacokinetics

. . . characterization of the time course of drug absorption,

distribution, metabolism and excretion, and with the

relationship of these processes to the intensity and time

course of therapeutic and adverse e�ects of drugs1
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Pharmacokinetics

Important growth period 1961-1972 (important concepts,
journals, . . . )

Clinical use limited due to need for many measurments per
subject

New approach by Sheiner et al. 1972

Pharmacokinetic models (non-linear)

Parameters with �xed and random component

Many advantages (sparse sampling, individualized dosing, . . . )

Non-linear mixed e�ect models (NLMEM)
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Parameter estimation

No analytic form for likelihood → estimation challenging

Sheiner et al. 1972 also proposed parameter estimation
algorithm � First order (FO) approximation2:

Model linearized w.r.t. random e�ect parameters

Random e�ect parameter evaluated at 0

Essentially treatment as linear mixed e�ect model

Algorithm fast & from 1980 available in software (NONMEM)

2MQL approximation in statistics literature
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Design

Design of population pharmacokinetic studies mostly heuristic &
rarely took advantage of NLMEM

Derivation of FIM approximation for NLMEM by Mentré et al.
1997

First-order approximation

Treatment as linear mixed e�ect model
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Evolution of estimation algorithms

FO approximation for estimation

Biased

Asympthotic theory does not apply

Problems already for simple models

NLMEM estimation algorithms:

Model linearization around mode (Lindström and Bates 1990)

Laplacian approximation (Tierney and Kadane 1986)

Importances sampling (Geweke 1989)

Gaussian quadrature (Davidian and Gallant 1992)

Adaptive gaussian quadrature (Pinheiro and Bates 1995)

Stochastic approximation expectation maximization (Kuhn and

Lavielle 2004)
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Evolution of population FIM approximations

FO approximation surprisingly accurate for a large class of
models3

Population FIM approximations

First order conditional approximation (Retout and Mentré 2003)

Non-block diagonal FO approximation (Foracchia et al. 2004)

First order conditional mode approximation (Nyberg et al. 2012)

FO approximation still most used (PFIM & PopED)

3Nyberg et al. Br J Clin Pharmacol 79, 6�17 (2015).
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Evolution of models

Advances in estimation methods fostered development of more
complex models

Complex random e�ects structures

Multiple outcomes

Many parameters

Discrete outcomes4

FO approximation not or less appropriate

4Mentré et al. CPT: pharmacomet. syst. pharmacol. 2, e46 (2013)
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Objectives

Apply integration algorithms, which have proven to be e�cient for
estimation, to evaluate the asymptotically exact FIM in NLMEM for
both discrete and continuous outcomes
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Nonlinear mixed e�ect models

For continuous data:

yi = f(g(µ, bi), ξi) + εi

For discrete data:

P (yi|bi) =
ni∏
j=1

h(yij, g(µ, bi), ξi)

with

yi = (yi1, . . . , yini)
T response for individual i (i = 1, . . . , N)

f , h structural model

ξi elementary design for subject i

g individual parameters vector, function of µ and bi

µ vector of �xed e�ects

bi vector of random e�ects for individual i, bi ∼ N (0,Ω)

εi vector of residual errors, εi ∼ N (0,Σ) and Σ diagonal matrix

Riviere, Ueckert (UMRS 1137) FIM 11 / 35
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Fisher Information Matrix (FIM)

Population FIM:

M(ψ,Ξ) =

N∑
i=1

M(ψ, ξi)

with

ψ vector of all parameters (Ψ = (µ,Ω,Σ)T)

Ξ population design (Ξ = (ξ1, . . . , ξN )T)

Individual FIM:

M(ψ, ξ) = E
(
∂ log(L(y,ψ))

∂ψ
∂ log(L(y,ψ))

∂ψ

T)
with the likelihood:

L(y, ψ) =

∫
b

p(y|b, ψ)p(b)db

where

p(y|b, ψ): conditional density of y given the random e�ects b

p(b): density of b

Riviere, Ueckert (UMRS 1137) FIM 12 / 35



Introduction Method Simulations Summary

M(ψ, ξ) = E

(
∂ log(L(y, ψ))

∂ψ

∂ log(L(y, ψ))

∂ψ

T
)

=

∫
y

(
∂ log(L(y, ψ))

∂ψ

∂ log(L(y, ψ))

∂ψ

T
)

︸ ︷︷ ︸
Ay

·L(y, ψ)dy

M(ψ, ξ) =

∫
y

Ay L(y, ψ)dy Monte Carlo - MC

M(ψ, ξ) =
∑
yr

Ayr a

AGQ MCMC
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Estimation of Ay with AGQ5

Ay = ∂ log(L(y,ψ))
∂ψ

∂ log(L(y,ψ))
∂ψ

T
= ∂L(y,ψ)

∂ψ
∂L(y,ψ)
∂ψ

T
L(y,Ψ))−2

with

L(y, ψ) =

∫
b

p(y|b, ψ)p(b)db =

∫
η

p(y|Ω 1
2 η, ψ)φ(η) dη (η

def
= Ω− 1

2 b)

∂L(y, ψ)

∂ψ
=

∫
b

∂(p(y|b, ψ)p(b))

∂ψ
db

∂L(y, ψ)

∂ψ
=

∫
η

∂p(y|Ω 1
2 η, ψ)

∂ψ
φ(η) dη +

∂L(y, ψ)

∂ψ
=

∫
η

− 1
2

[
Tr
(

Ω−1 ∂Ω
∂ψk

)
− ηTΩ− 1

2
∂Ω
∂ψk

Ω− 1
2 η
]
p(y|Ω 1

2 η, ψ)φ(η) dη

Adaptive Gaussian Quadrature - AGQ

5Nguyen & Mentré. Comp. Statistics & Data Analysis 80, 57�69 (2014).
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Gaussian Quadrature

∫
f(x)φ(z)dz ≈

Q∑
q=1

wqf(zq)
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Adaptive Gaussian Quadrature

∫
f(x)φ(z)dz ≈

Q∑
q=1

wqf(zq)

Center integration grid at mode of f(x)φ(z)

→

Center integration grid at mode of f(x)φ(z) & scale by ∂2

∂z2
f(x)φ(z)

→

Riviere, Ueckert (UMRS 1137) FIM 16 / 35
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MC-AGQ algorithm for FIM evaluation

(I) Draw an R-sample of y from its marginal distribution.

(II) Determine integration grid

(III) Approximate integrals
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MC-AGQ algorithm for FIM evaluation

(I) Draw an R-sample of y from its marginal distribution.

(II) Determine integration grid

Determine η̂ = arg maxη log p(y|Ω
1
2 η, ψ)φ(η) through BFGS

optimization starting at η.
Calculate ∂2

∂η2
log p(y|Ω

1
2 η, ψ)φ(η)|η=η̂ through numerical

di�erentiation.

Calculate quadrature nodes

aq1,...,qd = η̂ +

[
− ∂2

∂η2 log p(y|Ω 1
2 η, ψ)φ(η)

∣∣∣
η=η̂

]− 1
2

a∗q1,...,qd

and weights

wq1,...,qd =

∣∣∣∣∣
[
− ∂2

∂η2 log p(y|Ω 1
2 η, ψ)φ(η)

∣∣∣
η=η̂

]− 1
2

∣∣∣∣∣∏d
k=1 w

∗
qk

φ(aqk )

φ(a∗qk
)

(III) Approximate integrals
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MC-AGQ algorithm for FIM evaluation

(I) Draw an R-sample of y from its marginal distribution.

(II) Determine integration grid

(III) Approximate integrals∑Q
q1=1 · · ·

∑Q
qd=1wq1,...,qd · f̃(aq1,...,qd , ·)
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Reminder

M(ψ, ξ) = E

(
∂ log(L(y, ψ))

∂ψ

∂ log(L(y, ψ))

∂ψ

T
)

=

∫
y

(
∂ log(L(y, ψ))

∂ψ

∂ log(L(y, ψ))

∂ψ

T
)

︸ ︷︷ ︸
Ay

·L(y, ψ)dy

M(ψ, ξ) =

∫
y

Ay L(y, ψ)dy Monte Carlo - MC

M(ψ, ξ) =
∑
yr

Ayr
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Estimation of Ay with MCMC

After calculation... Ay in the FIM: ⇐⇒

∫
b1

∂(log(p(y|b1,ψ)p(b1)))
∂ψk

p(y|b1, ψ)p(b1)∫
p(y|b, ψ)p(b)db

db1.

∫
b2

∂(log(p(y|b2,ψ)p(b2)))
∂ψl

p(y|b2, ψ)p(b2)∫
p(y|b, ψ)p(b)db

db2
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Estimation of Ay with MCMC

After calculation... Ay in the FIM: ⇐⇒

∫
b1

∂(log(p(y|b1,ψ)p(b1)))
∂ψk

p(y|b1, ψ)p(b1)∫
p(y|b, ψ)p(b)db︸ ︷︷ ︸

conditional density
of b given y

db1.

∫
b2

∂(log(p(y|b2,ψ)p(b2)))
∂ψl

p(y|b2, ψ)p(b2)∫
p(y|b, ψ)p(b)db︸ ︷︷ ︸

conditional density
of b given y

db2

Markov Chains Monte Carlo - MCMC

Riviere, Ueckert (UMRS 1137) FIM 19 / 35
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MC-MCMC algorithm for FIM evaluation

(I) Draw an R-sample of y from its marginal distribution.
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MC-MCMC algorithm for FIM evaluation

(I) Draw an R-sample of y from its marginal distribution.

(II) For each value of y sampled:
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MC-MCMC algorithm for FIM evaluation

(I) Draw an R-sample of y from its marginal distribution.

(II) For each value of y sampled:

(III) Using MCMC, draw two series of M -samples of b from its conditional

density given y.
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MC-MCMC algorithm for FIM evaluation

(I) Draw an R-sample of y from its marginal distribution.

(II) For each value of y sampled:

(III) Using MCMC, draw two series of M -samples of b from its conditional
density given y.

(IV) Estimate
∫
b1

and
∫
b2

by the mean of the partial derivatives of the

conditional log-likelihood taken in the samples of b drawn in step (III).
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MC-MCMC algorithm for FIM evaluation

(I) Draw an R-sample of y from its marginal distribution.

(II) For each value of y sampled:

(III) Using MCMC, draw two series of M -samples of b from its conditional
density given y.

(IV) Estimate
∫
b1

and
∫
b2

by the mean of the partial derivatives of the

conditional log-likelihood taken in the samples of b drawn in step (III).

(V) Using MC, estimate
∫
y
by the mean according to y of the product of the

previous partial derivatives.
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Partial derivatives of the conditional log-likelihood

∂ (log(p(y|b, ψ)p(b)))
∂ψk

By hand. For continuous data:

∂ (log(p(y|b, ψ)p(b)))

∂ψk
= −

1

2

[
Tr

(
V −1
b

∂Vb

∂ψk

)
− 2(y − Eb)TV −1

b

∂Eb

∂ψk

− (y − Eb)TV −1
b

∂Vb

∂ψk
V −1
b (y − Eb) + Tr

(
Ω−1 ∂Ω

∂ψk

)
− bTΩ−1 ∂Ω

∂ψk
Ω−1b

]
with Eb = f(g(µ, b), ξ) and Vb = Σ

Numerically for all types of distributions

Riviere, Ueckert (UMRS 1137) FIM 21 / 35
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STAN∗ for MCMC

STAN

Markov Chain Monte Carlo (MCMC) sampler (as JAGS, BUGS, ...)

To sample in posterior distributions

Based on constructing a Markov chain that has the desired

distribution as its stationary distribution

STAN uses Hamiltonian Monte Carlo (HMC)

vs. random walk Monte Carlo methods (Metropolis-Hastings, Gibbs
sampling, ...)
More complex but more e�cient, faster convergence

⇒ Able to overcome some issues inherent in Gibbs sampling

STAN calculates the gradient of the log probability function (necessary for
HMC)

∗ Stan Development Team. Gelman, Carpenter, ... Columbia University

2014. Stan: A C++ Library for Probability and Sampling, Version 2.5.0. http://mc-stan.org
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FIM evaluation

We compared 3 approaches:

Linearization (FO) using PFIM 4.0

AGQ-based approach (AGQ) implemented in R (using statmod for nodes)

MCMC-based approach (MCMC) implemented in R (using RSTAN)

with clinical trial simulations (CTS):

Simulate 1000 datasets Y with Ψ = ΨT using R

For each Y : estimate Ψ̂ using Monolix 4.3

in terms of

RSE / RRMSE: RRMSE =

√
1

1000

∑
(Ψ̂−ΨT )2 /ΨT

Calculation time

Riviere, Ueckert (UMRS 1137) FIM 23 / 35
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Example 1: PK Warfarin

PKW: One compartment model with �rst order absorption and elimination:

f(φ = (ka, V, CL), t) =
70

V

ka

ka − CL
V

(
e−

CL
V t − e−kat

)
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Example 1: PK Warfarin

PKW: One compartment model with �rst order absorption and elimination:

f(φ = (ka, V, CL), t) =
70

V

ka

ka − CL
V

(
e−

CL
V t − e−kat

)

Fixed e�ects: (µka , µV , µCL) = (1.00, 8.00, 0.15)

Exponential random e�ects with variances:
(ω2
ka
, ω2

V , ω
2
CL) = (0.60, 0.02, 0.07)

Proportional residual error: σslope = 0.1

8 times: t = (0.5, 1, 2, 6, 24, 36, 72, 120)

N = 32 patients

Nyberg et al. Br J Clin Pharmacol 79, 6�17 (2015).
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Example 1 - RSE/RRMSE
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Example 2: Sigmoïd Emax model

SC1: Sigmoïd Emax model:

f(φ = (E0, Emax, ED50, γ), d) = E0 +
Emaxd

γ

EDγ
50 + dγ

Riviere, Ueckert (UMRS 1137) FIM 26 / 35
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Example 2: Sigmoïd Emax model

SC1: Sigmoïd Emax model:

f(φ = (E0, Emax, ED50, γ), d) = E0 +
Emaxd

γ

EDγ
50 + dγ

Fixed e�ects: (µE0 , µEmax , µED50 , µγ) = (5, 30, 500, 3)

Exponential random e�ects with variance-covariance:

Ω =


0.09 0.06 0.06 0
0.06 0.09 0.06 0
0.06 0.06 0.09 0

0 0 0 0.09


Combined residual error: (σinter, σslope) = (0.2, 0.2)

4 doses: d = (0, 100, 300, 1000)

N = 100 patients

Dumont, Chenel and Mentré. In�uence of covariance between random e�ects in design for nonlinear mixed-e�ect

models with an illustration in pediatric pharmacokinetics. J Biopharm Stat 2014.
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Example 2 - RSE/RRMSE
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Example 3: Repeated time-to-event

RRTE: Exponential distribution for repeated time-to-event with constant hazard:

P (y|b) = λ1 exp(−λ1t)

Fixed e�ects: µ1 = 1.0

Exponential random e�ects: λ1 = µ1 exp(b)
with variances: ω2

1 = 0.1

10 repeated measures per patient

N = 50 patients

Subject i=1 Subject i=2 Subject i=3 Subject i=4
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Example 3 - RSE/RRMSE
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Example 4: Longitudinal binary

LLB: Probability of response at time t:

P (y = 1|b) =
exp(β1 + β2(1− µ3δ)t)

1 + exp(β1 + β2(1− µ3δ)t)

Fixed e�ects: (µ1, µ2, µ3) = (−1.0, 4.0, 0.4)

Additive random e�ects with variances: (ω2
1 , ω

2
2) = (0.5, 4.0)

2 groups: δ = 0 and δ = 1

13 time points equally spaced between 0 and 1 time units for each patient

N = 25 patients per group

Subject i=1 Subject i=2 Subject i=26 Subject i=27

●
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● ●

●

● ● ● ● ● ● ●
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Example 4 - RSE/RRMSE

Riviere, Ueckert (UMRS 1137) FIM 31 / 35



Introduction Method Simulations Summary

Comparison: calculation time

Time:

PKW SC1 RTTE LLB
CTS >5h >5h >5h >5h

MCMC ≈ 6min ≈ 8min ≈ 2min ≈ 4min
AGQ ≈ 2min ≈ 13min ≈ 10s ≈ 2min
FO <5s <5s - -

� AGQ: time increases exponentially with the number of random parameters

� MCMC: time increases linearly
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Outline

1 Introduction

2 Proposed approaches to compute the FIM
General expression of the FIM
AGQ-based approach
MCMC-based approach

3 Evaluation by simulations

4 Summary

Riviere, Ueckert (UMRS 1137) FIM 32 / 35



Introduction Method Simulations Summary

Summary

Recent NLMEM (multivariate, complex, discrete, ...) require
improved method for FIM prediction

Presented two complementing MC-based methods for
calculating FIM

Advantages:

Adapted for discrete and continuous models

No model linearization

Very high agreement with clinical trial results

Drawbacks:

Much slower than FO approximation

Monte-Carlo noise
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Perspectives

Publish R packages on CRAN

Investigate design optimization:

Handling of MC noise (stochastic approximation, simulated

annealing, ...)

Adaptive approximation (re�ne approximation during

optimization)

Investigate alternative sampling methods (Latin hypercube
sampling, quasi-random sampling, ...)
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Thank you for your attention!

This work was supported by the Innovative Medicines Initiative Joint Undertaking under grant agreement no.
115156, resources of which are composed of �nancial contributions from the European Union's Seventh Framework
Program (FP7/2007 �2013) and EFPIA companies' in kind contribution. The DDMoRe project is also supported
by �nancial contribution from Academic and SME partners. This work does not necessarily represent the view of all
DDMoRe partners.

This work has also received funding from the European Union's 7th Framework Programme for research,

technological development and demonstration under Grant Agreement no 602552.

Riviere, Ueckert (UMRS 1137) FIM 35 / 35


	Introduction
	Proposed approaches to compute the FIM
	General expression of the FIM
	AGQ-based approach
	MCMC-based approach

	Evaluation by simulations
	Summary

