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Workpackage structure

2/38



Introduction Methods for computation of FIM and Applications Methods for Robust designs and Applications Discussion

Designs in pharmacometrics

Last decades: several methods/software for maximum likelihood
estimation of population parameters from longitudinal data using
nonlinear mixed effect models (NLMEM)

Problem beforehand: choice of "population" design

To obtain precise estimates / adequate power
- number of individuals (N) ?
- number of sampling times/individual (n)?
- allocation of sampling times?
- other design variables (doses, etc.)

Clinical trial simulation (CTS): time consuming

Asymptotic theory: expected Fisher Information Matrix 1(FIM)

1Mentré et al. Biometrika, 1997.
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Fisher Information Matrix in NLMEM

From FIM
Derive predicted Relative Standard Errors (RSE) and/or power

Compare and/or optimise designs

Analytical expression for FIM in NLMEM
Current approach in PFIM 2and other design software programs3:
first order linearisation of model around the expectation of random
effects (FO)
- Only for continuous data

- Performs well but has limitations in case of complex nonlinear

models and/or large variability

New approaches needed for computation of FIM
Without model linearisation
For both continuous and discrete data
⇒ Monte Carlo - Adaptive Gaussian Quadrature (MC-AGQ)4, 5

⇒ Monte Carlo - Hamiltonian Monte Carlo (MC-HMC)6

2 PFIM group. www.pfim.biostat.fr.
3 Nyberg et al. Br J Clin Pharmacol, 2014.
4 Nguyen and Mentré. Comput Stat Data Anal, 2014.

5 Ueckert and Mentré. Comput Stat Data Anal, 2016.
6 Riviere, Ueckert and Mentré. Biostatistics, 2016.
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Parameter and model uncertainty in designs

Optimal design depends on knowledge on model and parameters

Local planification: given the model m and parameter valuesΨ∗
m

Widely used criterion: D-optimality

Alternative: Robust designs

Taking into account uncertainty on parameters

Across a set of candidate models
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New methods for computation of FIM in NLMEM

Population FIM for one group design: M (Ψ,Ξ) = N ×M (Ψ,ξ)
Population design Ξ= {ξ,N} with identical elementary design ξ in all N subjects

Elementary FIM: M (Ψ,ξ) = Ey

(
∂ log(L(y,Ψ))

∂Ψ
∂ log(L(y,Ψ))

∂Ψ

T
)

with the likelihood:

L(y,Ψ) =
∫∫∫

p(y|b,Ψ)p(b|Ψ)db

where p(y|b,Ψ): pdf of observations y given random effects b
p(b|Ψ): pdf of b

⇒ Two integrals to compute: w.r.t. y and w.r.t. b

Use of MC and AGQ 5

Use of MC and HMC (in Stan 7) 6

⇒ Both approaches evaluated by CTS on several examples (from 8)

5Ueckert and Mentré. Comput Stat Data Anal, 2016.
6Riviere, Ueckert and Mentré. Biostatistics, 2016.
7Stan Development Team. Stan: A C++ Library for Probability and Sampling.
8Ogungbenro et al. J Pharmacokinet Pharmacodyn, 2011.
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Evaluation by CTS: Example of binary response

Logistic model for repeated binary response at several time points with treatment
increasing the slope of the logit of the response with time 5,6,9

logit(π) =β1 +β2(1+µ3δ)t, where

π is the probability of success

βp =µp +bp; bp ∼N (0,ω2
p)

t: time among 13 points equally
spaced between 0 and 12 months

2 treatment groups (δ= 0 & δ= 1)

N = 50 subjects/treatment group

Parameters Ψ∗
µ1 −2

µ2 (month−1) 0.09
µ3 5
ω1 0.70

ω2 (month−1) 0.17
5Ueckert and Mentré. Comput Stat Data Anal, 2016.
6Riviere, Ueckert and Mentré. Biostatistics, 2016.
9Lestini, Ueckert and Mentré. PODE, Uppsala, Sweden, 2016.
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Evaluation by CTS: Example of count response

Poisson model for repeated count response at several dose levels with a full Imax
model describing the relationship between log(λ) and dose 5,6

P(y = k|b) = λkexp(−λ)

k!
with log(λ) =β1

(
1− d

d+β2

)

βp =µpexp(bp); bp ∼N (0,ω2
p)

d: dose among 3 levels (0,0.4,0.7)

N = 20 subjects, nrep = 30
replications/subject/dose

Parameters Ψ∗
µ1 1
µ2 0.5
ω1 0.3
ω2 0.3

5Ueckert and Mentré. Comput Stat Data Anal, 2016.
6Riviere, Ueckert and Mentré. Biostatistics, 2016.
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Evaluation by CTS: Methods

Comparison of several approaches for evaluation of FIM:

MC-HMC implemented in R package MIXFIM available on CRAN 10

1000 MC / 200 HMC with 500 burn
1000 MC / 1000 HMC with 1000 burn
5000 MC / 200 HMC with 500 burn
5000 MC / 1000 HMC with 1000 burn

MC-AGQ implemented in R: 5000 MC / 10 AGQ nodes

Laplace approximation (LA): 5000 MC / 1 AGQ node

with clinical trial simulations (CTS):

Simulation of 1000 datasets withΨ=Ψ∗ using R

For each dataset: estimate Ψ̂ using Monolix 4.3

in terms of:

observed RSE and RRMSE from CTS

versus predicted RSE from expected FIM

10Riviere and Mentré. R Package MIXFIM, 2015.

11/38



Introduction Methods for computation of FIM and Applications Methods for Robust designs and Applications Discussion

Evaluation by CTS: Results for binary example
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Evaluation by CTS: Results for count example
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D-optimal designs for discrete data: Methods

Binary example Count example

N 100 subjects 60 subjects
nrep 1 replication 10 replications

Constraints n 4 times 3 doses

fixed design t1 = 0, t4 = 12 d1 = 0
variables

optimised design t2, t3 from 1 to 11 d2, d3 from 0.1 to 1
variables (step = 1, (step = 0.1,

no repetition) no repetition)

Optimisation Evaluation of FIM 500 Quasi MC 11 5000 MC
method for all possible designs 3 AGQ nodes 200 HMC

D-optimality det(M (Ψ∗,Ξ))1/P det(M (Ψ∗,Ξ))1/P

criterionΦD

11Ueckert and Mentré. CM Statistics Conference, London, UK, 2015.
14/38



Introduction Methods for computation of FIM and Applications Methods for Robust designs and Applications Discussion

D-optimal designs for discrete data: Results

Optimal times: ξD = (0,2,3,12).
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D-optimal designs for discrete data: Results

Optimal doses: ξD = (0,0.4,0.5).
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Conclusion (1)

New methods developed for computation of FIM avoiding FO

MC-AGQ and MC-HMC based methods

adapted for continuous and discrete NLMEM
high agreement with CTS
new tool for designs using MC-HMC: R package MIXFIM on CRAN

Enable first applications to design optimisation for binary and count data
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Methods for Robust designs (1)

Robustness w.r.t. parameters of a given model

Robust FIM, assuming a distribution p(Ψ) on the parameters

MR(Ξ) = EΨ(M (Ψ,Ξ))

- two integrals w.r.t. y and w.r.t. b for evaluation of M (Ψ,Ξ)
- one supplementary integral w.r.t. Ψ for evaluation of MR(Ξ)

Evaluation by MC-HMC using Stan (drawing jointlyΨ and y by MC)

DE-criterion for optimisation of robust design ΞDE

ΦDE (Ξ) = det(MR(Ξ))1/P

with P, number of population parameters of the model
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Methods for Robust designs (2)

Robustness w.r.t. a set of M candidate models

D-criterion for optimisation of design ΞD,m for each model m given
population parameter valuesΨ∗

m

ΦD,m(Ξ) = det(M (Ψ∗
m,Ξ))1/Pm

with Pm, number of population parameters of model m

Compound D-criterion 12 , 13 for optimisation of common design ΞCD

ΦCD(Ξ) =
M∏

m=1
ΦD,m(Ξ)αm =

M∏
m=1

(
det(M (Ψ∗

m,Ξ))
)αm/Pm

with αm, weight quantifying the balance between M models,
∑

mαm = 1

Implementation in R

Extension of MIXFIM for evaluation of robust FIM using MC-HMC

Use of compound optimality criterion to combine several models

12Atkinson et al. J Stat Plan Inference, 2008.
13Nguyen et al. Pharm Stat, 2016.
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Illustration in Robust designs for count data

Application to design optimisation in the previous count example

Robust optimal design accounting for uncertainty on parameters

Using robust FIM (5000 MC - 200 HMC) and DE-optimality criterion
Comparison between ΞD and ΞDE in terms of
- Allocation of optimal doses
- Relative efficiencies of a design Ξw.r.t. an optimal design

D-eff(Ξ) = ΦD(Ξ)
ΦD(ΞD) and DE-eff(Ξ) = ΦDE (Ξ)

ΦDE (ΞDE )

Robust optimal design across M candidate models

Using FIM by MC-HMC (5000 MC - 200 HMC) and compound
D-optimality (αm = 1/M)
Comparison between different ΞD,m and ΞCD in terms of
- Allocation of optimal doses
- Relative efficiencies of a design Ξw.r.t. an optimal design

D-effm (Ξ) = ΦD,m(Ξ)
ΦD,m(ΞD,m) and CD-eff(Ξ) = ΦCD(Ξ)

ΦCD(ΞCD)
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Robust design for count data: uncertainty on parameters

Poisson model for repeated count response at several dose levels with a full Imax
model describing the relationship between log(λ) and dose

P(y = k|b) = λkexp(−λ)

k!
with log(λ) =β1

(
1− d

d+β2

)

βp =µpexp(bp); bp ∼N (0,ω2
p)

Assuming uncertainty on
parameters µ2 and ω2

Ψ∗ p(Ψ)
µ1 1 1
µ2 0.5 L N (−0.89,0.63)

E(µ2) = 0.5; CV(µ2)= 70%
ω1 0.3 0.3
ω2 0.3 L N (−1.50,0.77)

E(ω2) = 0.3; CV(ω2)= 90%

Optimisation of 3 doses with
N = 60, nrep = 10
- fixing d1 = 0
- choosing d2 and d3 from 0 to 1
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Robust design for count data: uncertainty on parameters

Optimal doses: ξD = (0,0.4,0.5). Optimal doses: ξDE = (0,0.2,0.4).

Efficiencies
Design Ξ D-eff(Ξ) DE-eff(Ξ)

ΞD 100% 94.1%
{N = 60,ξ= (0,0.4,0.5)}

ΞDE 93.3% 100%
{N = 60,ξ= (0,0.2,0.4)}
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Robust design for count data: 4 candidate models

- Fixed effects µ1, µ2 for M2, M3, M4 chosen to have similar
mean value of log(λ) as for M1 at dose 0 and at dose 1

- Variability ω1 =ω2 = 0.3
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Robust design for count data: 4 candidate models

Optimal doses: ξD,M1 = (0,0.4,0.5). Optimal doses: ξD,M2 = (0,0.9,1).

Optimal doses: ξD,M3 = (0,0.9,1). Optimal doses: ξD,M4 = (0,0.2,1).
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Robust design for count data: 4 candidate models

D-efficiencies

D-effm (Ξ) = ΦD,m(Ξ)

ΦD,m(ΞD,m)

DesignΞ D-effM1 (Ξ) D-effM2 (Ξ) D-effM3 (Ξ) D-effM4 (Ξ)

ΞD,M1 100% 60.8% 68.9% 50.3%
{N = 60,ξ= (0,0.4,0.5)}

ΞD,M2 87.0% 100% 100% 30.8%
{N = 60,ξ= (0,0.9,1)}

ΞD,M3 87.0% 100% 100% 30.8%
{N = 60,ξ= (0,0.9,1)}

ΞD,M4 88.4% 85.7% 85.4% 100%
{N = 60,ξ= (0,0.2,1)}

Important loss of efficiency in some scenarios where the model is not
correctly pre-specified

26/38



Introduction Methods for computation of FIM and Applications Methods for Robust designs and Applications Discussion

Robust design for count data: 4 candidate models

D-efficiencies

D-effm (Ξ) = ΦD,m(Ξ)

ΦD,m(ΞD,m)

DesignΞ D-effM1 (Ξ) D-effM2 (Ξ) D-effM3 (Ξ) D-effM4 (Ξ)

ΞD,M1 100% 60.8% 68.9% 50.3%
{N = 60,ξ= (0,0.4,0.5)}

ΞD,M2 87.0% 100% 100% 30.8%
{N = 60,ξ= (0,0.9,1)}

ΞD,M3 87.0% 100% 100% 30.8%
{N = 60,ξ= (0,0.9,1)}

ΞD,M4 88.4% 85.7% 85.4% 100%
{N = 60,ξ= (0,0.2,1)}

Important loss of efficiency in some scenarios where the model is not
correctly pre-specified

26/38



Introduction Methods for computation of FIM and Applications Methods for Robust designs and Applications Discussion

Robust design for count data: 4 candidate models

Compound D-optimal design: ξCD = (0,0.2,1).
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Robust design for count data: 4 candidate models

D-efficiencies

D-effm (Ξ) = ΦD,m(Ξ)

ΦD,m(ΞD,m)

CD-efficiencies

CD-eff(Ξ) = ΦCD(Ξ)

ΦCD(ΞCD)

DesignΞ D-effM1 (Ξ) D-effM2 (Ξ) D-effM3 (Ξ) D-effM4 (Ξ) CD-eff(Ξ)

ΞD,M1 100% 60.8% 68.9% 50.3% 75.5%
{N = 60,ξ= (0,0.4,0.5)}

ΞD,M2 87.0% 100% 100% 30.8% 80.2%
{N = 60,ξ= (0,0.9,1)}

ΞD,M3 87.0% 100% 100% 30.8% 80.2%
{N = 60,ξ= (0,0.9,1)}

ΞD,M4 88.4% 85.7% 85.4% 100% 100%
{N = 60,ξ= (0,0.2,1)}

ΞCD 88.4% 85.7% 85.4% 100% 100%
{N = 60,ξ= (0,0.2,1)}

Good performance of the compound D-optimal design
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Conclusion (2)

Proposed methods for Robust designs

Extension of R package MIXFIM to compute the DE-optimality
criterion from robust FIM
Use of compound optimality criterion to combine several candidate
models

MC-HMC, relevant approach allowing for the first time robust design
optimisation for repeated count data

Robustness w.r.t. parameters: different optimal designs with versus
without uncertainty on parameters
Robustness w.r.t. models: compound D-optimal design providing a
good compromise for different candidate models

Ongoing work

Robustness w.r.t. parameters AND models: use of robust FIM in the
compound optimality criterion
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Discussion
Summary

New methods developed for computation of FIM avoiding FO

MC-AGQ and MC-HMC: relevant methods for designs
New tool for designs using MC-HMC: R package MIXFIM on CRAN
Computationally challenging, much slower than FO approach

Extension of these methods to propose robust optimal designs accounting
for uncertainty w.r.t. parameters and/or models

Perspectives

Replacement of MC in MC-HMC by more efficient approach: quasi-random
sampling 11

Evaluation of two-stage designs

Approaches already proposed and evaluated on continuous data 14, 15

To be evaluated in models for discrete data, accounting for uncertainty
w.r.t. parameters and/or models

Individual and Population Bayesian information matrix
11Ueckert and Mentré. CM Statistics Conference, London, UK, 2015.
14Dumont, Chenel, Mentré. Commun Stat Simul C, 2016.
15Lestini, Dumont, Mentré. Pharm Res, 2015.
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Back-up
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NLMEM: Notations

For continuous data: For discrete data:
yi = f (g(µ,bi),ξi)+εi p(yi|bi) =∏ni

j=1 h(yij,g(µ,bi),ξi)
with

yi = (yi1, . . . ,yini )T response for individual i (i = 1, . . . ,N)

f , h structural model

ξi elementary design for subject i

βi = g(µ,bi) individual parameters vector

µ vector of fixed effects

bi vector of random effects for individual i, bi ∼N (0,Ω)

εi vector of residual errors, εi ∼N (0,Σ) and Σ diagonal matrix

Ψ: Population parameters (µ,ω,σ)

p(yi|bi) =N (f ,Σ)
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Fisher Information Matrix (FIM)

Population FIM for one group design: M (Ψ,Ξ) = N ×M (Ψ,ξ)
Population design Ξ= {ξ,N} with identical elementary design ξ in all N subjects

Elementary FIM:

M (ψ,ξ) = Ey

(
∂ log(L(y,ψ))

∂ψ
∂ log(L(y,ψ))

∂ψ

T
)

with the likelihood:

L(y,ψ) =
∫

p(y|b,ψ)p(b|ψ)db

where p(y|b,ψ): pdf of y given the random effects b

p(b|ψ): pdf of b
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MC-HMC method for FIM evaluation

M (ψ,ξ) = Ey

(
∂ log(L(y,ψ))

∂ψ
∂ log(L(y,ψ))

∂ψ

T
)
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MC-HMC method for FIM evaluation

M (ψ,ξ) = Ey

(
∂ log(L(y,ψ))

∂ψ
∂ log(L(y,ψ))

∂ψ

T
)

M (ψ,ξ)k,l = Ey


∂ log(L(y,ψ))

∂ψk

∂ log(L(y,ψ))

∂ψl

T

︸ ︷︷ ︸
Dy


Monte Carlo - MC
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MC-HMC method for FIM evaluation

M (ψ,ξ) = Ey

(
∂ log(L(y,ψ))

∂ψ
∂ log(L(y,ψ))

∂ψ

T
)

M (ψ,ξ)k,l = Ey


∂ log(L(y,ψ))

∂ψk

∂ log(L(y,ψ))

∂ψl

T

︸ ︷︷ ︸
Dy


Monte Carlo - MC

After calculation... Dy ⇐⇒

∫
b1

∂
(
log(p(y|b1,ψ)p(b1 |ψ))

)
∂ψk

p(y|b1,ψ)p(b1 |ψ)∫
p(y|b,ψ)p(b|ψ)db

db1.
∫

b2
∂
(
log(p(y|b2,ψ)p(b2 |ψ))

)
∂ψl

p(y|b2,ψ)p(b2 |ψ)∫
p(y|b,ψ)p(b|ψ)db

db2
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MC-HMC method for FIM evaluation

M (ψ,ξ) = Ey

(
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∂ log(L(y,ψ))

∂ψ

T
)
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After calculation... Dy ⇐⇒

∫
b1

∂
(
log(p(y|b1,ψ)p(b1 |ψ))

)
∂ψk

p(y|b1,ψ)p(b1 |ψ)∫
p(y|b,ψ)p(b|ψ)db︸ ︷︷ ︸

conditional density
of b given y

db1.
∫

b2
∂
(
log(p(y|b2,ψ)p(b2 |ψ))

)
∂ψl

p(y|b2,ψ)p(b2 |ψ)∫
p(y|b,ψ)p(b|ψ)db︸ ︷︷ ︸

conditional density
of b given y

db2
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conditional density
of b given y

db2

E
(
∂(log(p(y|b,ψ)p(b|ψ)))

∂ψk

∣∣∣Y )
.E

(
∂(log(p(y|b,ψ)p(b|ψ)))

∂ψl

∣∣∣Y )
Markov Chains Monte Carlo - MCMC
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The (k, l) term of the FIM estimated as:

M̃ (ψ,ξ)k,l =
1

R

R∑
r=1

A(1)
k,r .A(2)

l,r

with A(1)
k,r =

1

M

M∑
m=1

∂
(
log(p(yr |b(1)

m,r ,ψ)p(b(1)
m,r))

)
∂ψk

A(2)
l,r = 1

M

M∑
m=1

∂
(
log(p(yr |b(2)

m,r ,ψ)p(b(2)
m,r))

)
∂ψl

where

(yr)r=1,...,R is a R-sample of the marginal distribution of y (MC)

(b(1)
m,r)m=1,...,M and (b(2)

m,r)m=1,...,M are 2R M-samples of the conditional
density of b given yr (HMC)

To be symmetric ⇒ M̂ (ψ,ξ) = M̃ (ψ,ξ)+M̃ (ψ,ξ)T

2
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MC-HMC method for Robust FIM evaluation

Robust FIM: MR(ξ) = EΨ(M (Ψ,ξ))

MR(ξ) = Eψ

(
Ey

(
∂ log(L(y,ψ))

∂ψ

∂ log(L(y,ψ))

∂ψ

T
))

MR(ξ)k,l = Eψ

Ey


∂ log(L(y,ψ))

∂ψk

∂ log(L(y,ψ))

∂ψl

T

︸ ︷︷ ︸
Dy




Monte Carlo - MC - joint sampling of ψ and y
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Dy ⇐⇒ E
(
∂(log(p(y|b,ψ)p(b|ψ)))

∂ψk

∣∣∣Y )
.E

(
∂(log(p(y|b,ψ)p(b|ψ)))

∂ψl

∣∣∣Y )
Markov Chains Monte Carlo - MCMC
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The (k, l) term of the FIM estimated as:

M̃R(ξ)k,l =
1

R

R∑
r=1

B(1)
k,r .B(2)

l,r

with B(1)
k,r =

1

M

M∑
m=1

∂
(
log(p(yr |b(1)

m,r ,ψr)p(b(1)
m,r ,ψr)

)
∂ψk

B(2)
l,r = 1

M

M∑
m=1

∂
(
log(p(yr |b(2)

m,r ,ψr)p(b(2)
m,r ,ψr)

)
∂ψl

where

(Ψr ,yr)r=1,...,R is a R-sample of the joint distribution of (Ψ,y) (MC)

(b(1)
m,r)m=1,...,M and (b(2)

m,r)m=1,...,M are 2R M-samples of the conditional
density of b given yr (HMC)

To be symmetric ⇒ M̂R(ξ) = M̃R(ξ)+M̃R(ξ)T

2
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