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Designs in pharmacometrics

@ Last decades: several methods/software for maximum likelihood
estimation of population parameters from longitudinal data using
nonlinear mixed effect models (NLMEM)

@ Problem beforehand: choice of "population"” design

o To obtain precise estimates / adequate power
- number of individuals (N) ?
- number of sampling times/individual (n)?
- allocation of sampling times?
- other design variables (doses, etc.)

o Clinical trial simulation (CTS): time consuming

o Asymptotic theory: expected Fisher Information Matrix ! (FIM)

IMentré et al. Biometrika, 1997.
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Fisher Information Matrix in NLMEM

@ From FIM
o Derive predicted Relative Standard Errors (RSE) and/or power
o Compare and/or optimise designs
@ Analytical expression for FIM in NLMEM
o Current approach in PFIM 2and other design software programs?’:

first order linearisation of model around the expectation of random
effects (FO)

- Only for continuous data
- Performs well but has limitations in case of complex nonlinear
models and/or large variability
@ New approaches needed for computation of FIM

o Without model linearisation

o For both continuous and discrete data
= Monte Carlo - Adaptive Gaussian Quadrature (MC-AGQ)4’ 5
= Monte Carlo - Hamiltonian Monte Carlo (MC-HMC)®

2 pEIM group. www.pfim.biostat.fr.
3 Nyberg et al. BrJ Clin Pharmacol, 2014.
4 Nguyen and Mentré. Comput Stat Data Anal, 2014.

5 Ueckert and Mentré. Comput Stat Data Anal, 2016.
6 Riviere, Ueckert and Mentré. Biostatistics, 2016.
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Parameter and model uncertainty in designs

@ Optimal design depends on knowledge on model and parameters
o Local planification: given the model m and parameter values ¥,

o Widely used criterion: D-optimality

@ Alternative: Robust designs
o Taking into account uncertainty on parameters

o Across a set of candidate models
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New methods for computation of FIM in NLMEM

Population FIM for one group design: .4 (¥,Z) = N x 4 (¥,¢)
Population design Z = {£, N} with identical elementary design ¢ in all N subjects

T
Elementary FIM: .# (¥,{) = Ey alOggL\I(,y ) alOg%LlI(,y )

with the likelihood:
L(y,¥) =fp(y|b,‘l’)p(bl‘l’)db

where  p(y|b,¥): pdf of observations y given random effects b
p(bl'P): pdf of b

= Two integrals to compute: w.r.t. y and w.r.t. b
@ Use of MC and AGQ °
@ Use of MC and HMC (in Stan 7) 6

= Both approaches evaluated by CTS on several examples (from )

SUeckert and Mentré. Comput Stat Data Anal, 2016.
SRiviere, Ueckert and Mentré. Biostatistics, 2016.
7Stan Development Team. Stan: A C++ Library for Probability and Sampling.

8 Ogungbenro et al. / Pharmacokinet Pharmacodyn, 2011.
1/38



@0000

Evaluation by CTS: Example of binary response

Logistic model for repeated binary response at several time points with treatment
increasing the slope of the logit of the response with time °6:9

logit(m) = B1 + B2(1 + u3d)t, where

subject =t subject =1 @ 7 is the probability of success

— lrealmenl‘

50 — = control ‘ ‘ 5=1

® Bp=pp+bp; by~ N 0,03

. . / @ r: time among 13 points equally
— ] spaced between 0 and 12 months

2 4 6 8 10 1‘2 2 4 6 8 10 12
‘ . — om ] == S ] @ N =50 subjects/treatment group
-1 - Parameters p*
& /_,,/— 3 /—"_*’ 1 —2
I (month™T) | 0.09
| ‘ - 19SS EBUE RS m =
SR SR [ 0.70
w (month™1) | 0.17

5Ueckert and Mentré. Comput Stat Data Anal, 2016.
6Riviere, Ueckert and Mentré. Biostatistics, 2016.

9 Lestini, Ueckert and Mentré. PODE, Uppsala, Sweden, 2016.

2 treatment groups (6 =0&§ =1)
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Evaluation by CTS: Example of count response

Poisson model for repeated count response at several dose levels with a full Imax
model describing the relationship between log(A) and dose -8

Akexp(—)l) . ( d )
— - th log(1) = 11— —0n
Py=klb) = . with log(A) = 1 i+ p
© o dose=0 ° dose=0.4 dose=0.7

o ﬁp = ppexp(bp); bp ~ ,/V(O,w%)
@ d: dose among 3 levels (0,0.4,0.7)

1 s e > @ N =20 subjects, nrep =30
replications/subject/dose

>m
Parameters | W*
" N N M1 1
] e e et e e e e e ee H2 0.5
w1 0.3
E | Y CSC YU S NP P Y w2 0.3

Observation

5Ueckert and Mentré. Comput Stat Data Anal, 2016.

6Rivielre, Ueckert and Mentré. Biostatistics, 2016.
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Evaluation by CTS: Methods

Comparison of several approaches for evaluation of FIM:

@ MC-HMC implemented in R package MIXFIM available on CRAN 1°

1000 MC / 200 HMC with 500 burn
1000 MC / 1000 HMC with 1000 burn
5000 MC / 200 HMC with 500 burn
5000 MC / 1000 HMC with 1000 burn

@ MC-AGQ implemented in R: 5000 MC / 10 AGQ nodes
@ Laplace approximation (LA): 5000 MC / 1 AGQ node

with clinical trial simulations (CTS):
@ Simulation of 1000 datasets with ¥ = ¥* using R
@ For each dataset: estimate W using Monolix 4.3
in terms of:
@ observed RSE and RRMSE from CTS
@ versus predicted RSE from expected FIM

10Riviere and Mentré. R Package MIXFIM, 2015.
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Evaluation by CTS: Results for binary example

CTS RSE

CTS RRMSE
MCMC 1000/200
MCMC 1000/1000
MCMC 5000/200
MCMC 5000/1000

AGQ
| LA
2
Llq L2 L3 oy

CONEEEDN

RRMSE/RSE (%)
10 20 30 40 50 60 70 80 90 100

0
|
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Evaluation by CTS: Results for count example

CTS RSE

CTS RRMSE
MCMC 1000/200
MCMC 1000/1000
MCMC 5000/200
MCMC 5000/1000
AGQ

LA

4 Ha mf

CONEEEDN

RRMSE/RSE (%)
10 20 30 40 50 60 70 80 90 100

0
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D-optimal designs for discrete data: Methods

\ Binary example \ Count example
N 100 subjects 60 subjects
Nrep 1 replication 10 replications
Constraints n 4 times 3 doses
fixed design 1n=01=12 d =0
variables

optimised design

o, t3 from 1to 11

do, d3 from0.1to 1

variables (step=1, (step=0.1,

no repetition) no repetition)
Optimisation Evaluation of FIM 500 Quasi MC 1! 5000 MC
method for all possible designs 3 AGQ nodes 200 HMC

D-optimality
criterion ®p

det(u (¥*,=)1/P

det(u (¥*,=)1/P

Hyeckert and Mentré. CM Statistics Conference, London, UK, 2015.
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D-optimal designs for discrete data: Results

Binary data

1.8

A

1.6

r1.5

3rd time
uouellIo-g

ri.4

r1.3

2 4 6 8 10
2nd time

Optimal times: {p = (0,2,3,12).
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D-optimal designs for discrete data: Results

Count data
1.0 480
460
0.8 A
440
¥
8 420 Q
S 061 o
= =
<2 400 S
0.4 r380
r360
0.2 1 r
| 340
0.2 04 0.6 0.8
2nd dose

Optimal doses: ¢ p = (0,0.4,0.5).
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Conclusion (1)

New methods developed for computation of FIM avoiding FO
@ MC-AGQ and MC-HMC based methods

e adapted for continuous and discrete NLMEM
o high agreement with CTS
e new tool for designs using MC-HMC: R package MIXFIM on CRAN

@ Enable first applications to design optimisation for binary and count data
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Methods for Robust designs (1)

Robustness w.r.t. parameters of a given model

@ Robust FIM, assuming a distribution p(¥) on the parameters
MR(E) = Ly (M (Y, E))

- two integrals w.r.t. y and w.r.t. b for evaluation of .4 (¥, Z)
- one supplementary integral w.r.t. 'V for evaluation of #r(Z)

@ Evaluation by MC-HMC using Stan (drawing jointly ¥ and y by MC)

@ DE-criterion for optimisation of robust design = pg
Ppp(E) = det(MREN'P

with P, number of population parameters of the model

19/38
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Methods for Robust designs (2)

Robustness w.r.t. a set of M candidate models
@ D-criterion for optimisation of design Zp ;;; for each model m given
population parameter values V5,

D, m(E) = det( M (P, )/ Pm

with Py, number of population parameters of model m
@ Compound D-criterion 12+ 13 for optimisation of common design Z¢p
M M am! P
Ocp@E = [[ Ppm@E = [] (det(s (¥}, z))* ' m
m=1 m=1

with a;, weight quantifying the balance between M models, Y j,am=1

Implementation in R
@ Extension of MIXFIM for evaluation of robust FIM using MC-HMC

@ Use of compound optimality criterion to combine several models

12 Atkinson et al. J Stat Plan Inference, 2008.

13Nguyen et al. Pharm Stat, 2016.
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[lustration in Robust designs for count data

Application to design optimisation in the previous count example

@ Robust optimal design accounting for uncertainty on parameters

e Using robust FIM (5000 MC - 200 HMC) and DE-optimality criterion
o Comparison between Zp and Zpg in terms of

- Allocation of optimal doses

- Relative efficiencies of a design = w.r.t. an optimal design

D-eff(2) = ‘I’D((:)) and DE-eff(5) = %

@ Robust optimal design across M candidate models
e Using FIM by MC-HMC (5000 MC - 200 HMC) and compound
D-optimality (a;, = 1/M)
o Comparison between different Zp ;,;, and Z¢p in terms of
- Allocation of optimal doses
- Relative efficiencies of a design = w.r.t. an optimal design

= _ Dp i (E) _ = _ _Pcp(E)
D-eff;, (5) = O EDm) and CD-eff (2) = @cpEcp)

21/38
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Robust design for count data: uncertainty on parameters

Poisson model for repeated count response at several dose levels with a full Imax
model describing the relationship between log(1) and dose

Ak exp(—1) . ( d )
- - th log(A) = B1 |1 - ——-
P(y = kib) = a with log(4) = 1 a+ B
® Bp=ppexp(bp); by ~ W(O,wf,)
) @ 90% prediction interval of log(2.) ° Assuming uncertainty on

at each dose computed from p(y)

. parameters pp and wy
© pF p(¥)
M1 1 1
37 Uy | 05 LN (—0.89,0.63)
3 E(u2) = 0.5; CV(u2)=70%
< w) | 03 0.3
w | 03 LN (-1.50,0.77)
E(w>) = 0.3; CV(w3)= 90%

@ Optimisation of 3 doses with
N =60, firep = 10
-fixingd; =0
- choosing dy and d3 from 0 to 1

: :
0.0 0.2 04 0.6 0.8
dose =1 1~LN(-0.89,0.63)
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Robust design for count data: uncertainty on parameters

Count Model - Lognormal a priori distribution

Count Model - no prior distribution

0.90 IO 0.90 rUn
02 04 06 08 02 04 06 08
Optimal doses: ¢ p = (0,0.4,0.5). Optimal doses: ¢ pr = (0,0.2,0.4).
Efficiencies
Design = | D-eff(E) | DE-eff(E) |

Zp 100% 94.1%
{N=60,¢=(0,0.4,0.5)}

EDE 93.3% 100%
{N=60,¢=1(0,0.2,0.4)}
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Robust design for count data: 4 candidate models

i d
M1: log(2)=p:(1-———) M2: log(%)=p4(1- B,d)
d+p;
o 18 = 21
k=3 B
O] 1 2 34
e T T T T T T e T T T T T T
00 02 04 06 08 10 00 02 04 086 08 10
dose  py=1 p,=0.5 dose =1 11,=0.67
" ’ ; g Psd
M3: log()=B1(1 —polog(d + 1)) M4: log()=p+(1 - )
d+p,
2 24 = 89
h B
o = o =4
=Ll T T T T T T e T T T T T T
00 02 04 06 08 10 00 02 04 06 08 10
dose =1 11,=0.96 dose =1 11,=0.2 Ps=p5=0.8

- Fixed effects 11, pp for M2, M3, M4 chosen to have similar
mean value of log(A) as for M1 at dose 0 and at dose 1

- Variability w1 = w2 =0.3 94/38
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Robust design for count data: 4 candidate models

d
log(1)=p4(1 *m)

3rd dose

2nd dose

Optimal doses: {p 71 = (0,0.4,0.5).

log(2)=B1(1 - Blog(d + 1))

3rd dose

02 04 os 08

1.0
0.9
0.8
079
0.6%
0.5<
0.4
0.3

02 04 06

2nd dose

Optimal doses: S(D,MS =1(0,0.9,1).

0.2

3rd dose

log(1)=p4(1-Bod)

02 04 06 038
2nd dose

Optimal doses: 'fD,MZ =1(0,0.9,1).

d
10g(1)=Pr(1 -4 %)

1.0
09
038
070
&
063
053
g

04
0.3

0.2 0.4 0.6 0.8

2nd dose

Optimal doses: { 74 = (0,0.2,1).

=02
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Robust design for count data: 4 candidate models

D-efficiencies

D-effyy (=) = —2mE)
®p,mEp,m)
Design E D-effy (B) | D-effypp (B) | D-effyz (B) | D-effaq (B)
Epn 100% 60.8% 68.9% 50.3%
{N=60,¢=1(0,0.4,0.5)}
Ep.mz 87.0% 100% 100% 30.8%
{N=60,¢=(0,0.9,1)}
Ep,M3 87.0% 100% 100% 30.8%
{N=60,¢ = (0,0.9,1)}
Ep,Ma 88.4% 85.7% 85.4% 100%
{N=60,¢=(0,0.2,1)}
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Robust design for count data: 4 candidate models

D-efficiencies

D-effy, (=) = — 2
®p,m(EDp,m)
Design 2 D-effp1 (E) D-effpp () D-effpr3 (E) D-effpry ()
Ep,m 100% 60.8% 68.9% 50.3%
{N=60,¢=(0,0.4,0.5)}
Ep,m2 87.0% 100% 100% 30.8%
{N=60,¢=(0,0.9,1)}
Ep,M3 87.0% 100% 100% 30.8%
{N=60,&=(0,0.9,1)}
Ep,M4 88.4% 85.7% 85.4% 100%
{N=60,¢=(0,0.2,1)}

@ Important loss of efficiency in some scenarios where the model is not
correctly pre-specified
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Robust design for count data: 4 candidate models

Compound D-optimal design: {cp = (0,0.2,1).

‘ : : pr1.0

' 0.9

0.8 0.8
LS
8
$08] - 0.6 g
” g
052

e | 0.4

r0.3

0.2
‘ ‘ ‘ \ —0.2
0.2 0.4 0.6 0.8
2nd dose

27/38



0000000e

Robust design for count data: 4 candidate models

D-efficiencies CD-efficiencies
D-effy, (3) = —2mE) CD-eff(2) = —CDEL
(Dl)Jn(:lllna) (b(HD(:L(H))
Design E D-effys; (E) | D-effan () | D-effys (E) | D-effaa (E) | CD-eff(2)
Ep,M1 100% 60.8% 68.9% 50.3% 75.5%
{N=60,¢=(0,0.4,0.5)}
Ep,M2 87.0% 100% 100% 30.8% 80.2%
{N=60,¢=(0,0.9,1)}
Ep,M3 87.0% 100% 100% 30.8% 80.2%
{N=60,¢=(0,0.9,1)}
Ep,M4 88.4% 85.7% 85.4% 100% 100%
{N=60,¢=(0,0.2,1)}
Ecp 88.4% 85.7% 85.4% 100% 100%
{N=60,&=1(0,0.2,1)}

@ Good performance of the compound D-optimal design
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Conclusion (2)

@ Proposed methods for Robust designs

o Extension of R package MIXFIM to compute the DE-optimality
criterion from robust FIM

@ Use of compound optimality criterion to combine several candidate
models

@ MC-HMC, relevant approach allowing for the first time robust design
optimisation for repeated count data

o Robustness w.r.t. parameters: different optimal designs with versus
without uncertainty on parameters
o Robustness w.r.t. models: compound D-optimal design providing a
good compromise for different candidate models
@ Ongoing work

@ Robustness w.r.t. parameters AND models: use of robust FIM in the
compound optimality criterion

29/38
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Discussion
Summary

@ New methods developed for computation of FIM avoiding FO

o MC-AGQ and MC-HMC: relevant methods for designs
o New tool for designs using MC-HMC: R package MIXFIM on CRAN
o Computationally challenging, much slower than FO approach

@ Extension of these methods to propose robust optimal designs accounting
for uncertainty w.r.t. parameters and/or models

Perspectives
@ Replacement of MC in MC-HMC by more efficient approach: quasi-random
sampling 11

@ Evaluation of two-stage designs

o Approaches already proposed and evaluated on continuous data 14,15

o To be evaluated in models for discrete data, accounting for uncertainty
w.r.t. parameters and/or models

@ Individual and Population Bayesian information matrix

L yeckert and Mentré. CM Statistics Conference, London, UK, 2015.
14Dum0nt, Chenel, Mentré. Commun Stat Simul C, 2016.

15 Lestini, Dumont, Mentré. Pharm Res, 2015.
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NLMEM: Notations

For continuous data:  For discrete data:

yi=fgwb),En+e;  plyilby) = l'[]'-z1 h(yij, g b, §i) L

Vi= (yﬂ,...,ymi)T response for individual i (i=1,...,N)
f, hstructural model
¢; elementary design for subject i
Bi = g(u, b;) individual parameters vector
u vector of fixed effects
b; vector of random effects for individual i, b; ~ A4 (0,Q)
€; vector of residual errors, €; ~ A'(0,X) and X diagonal matrix
V: Population parameters (i, w, o)
pWilb) = N (f,Z)
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Fisher Information Matrix (FIM)

Population FIM for one group design: 4 (¥,E) = N x 4 (¥,¢)
Population design Z = {£, N} with identical elementary design ¢ in all N subjects

Elementary FIM:

_ 1 [dlogLy,) dlogLiy,y) T
Jl(w,f)—Ey( oy o
with the likelihood:

L(J’,w)=fp(ylb,u/)p(blw)db

where  p(y|b,y): pdf of y given the random effects b
pbly): pdf of b

24/38



MC-HMC method for FIM evaluation

alog(L(y,y)) dlog(Ly,y) T
ﬂ(w,f):Ey( gawyv/ gawyw )
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MC-HMC method for FIM evaluation

alog(L(y,y)) dlog(Ly,y) T
ﬂ(w,f):Ey( gawyv/ gawyw )

dlog(L(y,w)) dlog(Ly,y)) T
Oy oy
Dy
Monte Carlo - MC

MY, g1 =Ly
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MC-HMC method for FIM evaluation

alog(L(y,y)) dlog(Ly,y) T
aﬂ(w,f):Ey( gawyv/ gawyu/ )

dlog(L(y, w)) dlog(L(y,y) T
Oy oy
Dy

MY, E) 1= Ey

Monte Carlo - MC

After calculation... Dy <

I d(log(pylby WIpb1 W) pyibyWpb1ly) | 0(log(pylbp W) p(b21y))) p(yiba,¥)pbaly) dby
by oy Tpoibu)pbiy)ab 1 bz oy T pyiby) p(bly)db
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MC-HMC method for FIM evaluation

alog(L(y,y)) dlog(Ly,y) T
ﬂ(w,f):Ey( gawyv/ gawyw )

dlog(L(y,w)) dlog(Ly,y)) T
Oy oy
Dy
Monte Carlo - MC

MY,y = By

After calculation... Dy <

by, b
Iy d(log(p(ylby W) p(by ly)))  pUIbL,¥)p(by[Y) dby.f a

(log(p(yiba, y)ptba ) PWib2, yIplbaly)

EI7 Tpiby)pbiy)ds LIz
Nihhih Aituts o

conditional density
of bgiven y

a
oy Tpib ) pblyrdb 2
o

conditional density
of bgiven y
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MC-HMC method for FIM evaluation

alog(L(y,y)) dlog(Ly,y) T
ﬂ(w,f):Ey( gawyv/ gawyw )

dlog(L(y,w)) dlog(Ly,y)) T
Oy oy
Dy
Monte Carlo - MC

MY,y = By

After calculation... Dy <
I d(log(p(ylby, w)p(by ly))  pUIbLY)p(by [Y) dby.J| d(log(p(ylby,w)p(bo ly)))  PYIb2, ) p(baly)
1

W Troibppwivyap b2 oy Tp0ib,y)pbly)dp >
—_— —_—
conditional density conditional density

of bgiven y of bgiven y

d(log(p(ylb,y) p(bly))) ‘ d(log(pylb,y) p(bly))) ‘
E ( oy Y) £ ( oy Y)

Markov Chains Monte Carlo - MCMC

25/38



The (k, ]) term of the FIM estimated as:

1
a0 3 AL
":
. 1 1 0(log(plyrlbly w)pbiy )
with AV = — Z
kr M= oy
oL % 0 (1og(p(yrlbi, v (B
lr vy,

where

@ (¥r)r=1,..ris a R-sample of the marginal distribution of y (MC)

° (b%r) m=1,..,M and (b%?r)mﬂ,_wM are 2R M-samples of the conditional
density of b given y, (HMC)

~ 7 7 T
To be symmetric = 4 (y,¢) = M
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MC-HMC method for Robust FIM evaluation

Robust FIM: AR(&) = Fy (M (Y, E))

dlog(L(y,y)) dlog(L(y,y) T
vﬂR(f)=l-fu/(Ey( "g(au(/y ¥) 0g<a u(/ywn ))

dlog(L(y, ) dlog(Ly,y)) "
oy oy
Dy
Monte Carlo - MC - joint sampling of 1/ and y

V”R(f)k;,l =Ey Ey
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MC-HMC method for Robust FIM evaluation

dlog(L(y, ) dlog(Lly,y) T
%R(E):E(/,(Ey( 0g(L(y, y)) dlog(L(y, y)) ))

oy oy

dlog(L(y, ) dlog(Ly,y) T
oy oy
Dy
Monte Carlo - MC - joint sampling of 1 and y

MRE) 1= Ly | Ey

3Qog(p(by) p(bly)) | d(log(py1b.y) pbly) ’
Dy@E( oy Y).E( o Y]

Markov Chains Monte Carlo - MCMC
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The (k, ]) term of the FIM estimated as:

>

_ 1 R
3 — (1) p(2)
MRE) 1= RZlBk,r'Bl,r

r=

0 (1og(pyrIbR ) p(be, 1)

m_ 1 %
with BWY = —
b M oy
0 (10g(pyr 12w ) B2 1)

m=1 61//1
where

@ (¥, ¥)r=1,.. R isa R-sample of the joint distribution of (¥, y) (MC)

.....

° (b%r) m=1,..,M and (b%?r)mﬂ,_wM are 2R M-samples of the conditional
density of b given y, (HMC)

~ 7/ 7/ T
To be symmetric = #r({) = M
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