Using Hamiltonian Monte Carlo to design clinical trials with longitudinal data

Florence Loingeville, Thu Thuy Nguyen, Marie-Karelle Riviere, Giulia Lestini, Sebastian Ueckert, France Mentré

IAME, UMR 1137 INSERM - University Paris Diderot, Paris, France

IDeAl Webinar - WP5, October 27, 2016

Contents

Introduction

2 New methods for computation of FIM and Applications

- Methods
- Evaluation by CTS
- Illustration in D-optimal designs for binary and count data

Extension of methods for Robust designs and Applications

- Methods
- Illustration in Robust optimal designs for count data

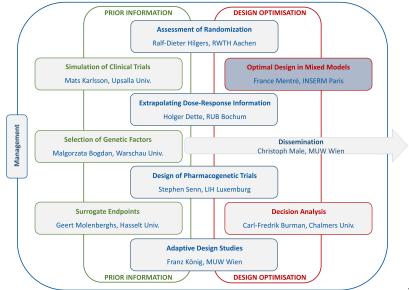
Discussion

Introduction	Methods for computation of FI	M and	Application

Contents

IntroductionMethods for computation of FIM and Application•••••••••••••••••

Workpackage structure



IntroductionMethods for computation of FIM and Applications○●○○○○○○○○○○○○○○

Designs in pharmacometrics

- Last decades: several methods/software for **maximum likelihood** estimation of population parameters from **longitudinal data** using nonlinear mixed effect models (NLMEM)
- Problem beforehand: choice of "population" design
 - To obtain precise estimates / adequate power
 - number of individuals (N) ?
 - number of sampling times/individual (n)?
 - allocation of sampling times?
 - other design variables (doses, etc.)
 - Clinical trial simulation (CTS): time consuming
 - Asymptotic theory: **expected Fisher Information Matrix** ¹(FIM)

¹Mentré et al. *Biometrika*, 1997.

Fisher Information Matrix in NLMEM

• From FIM

- Derive predicted Relative Standard Errors (RSE) and/or power
- Compare and/or optimise designs

• Analytical expression for FIM in NLMEM

• Current approach in PFIM ² and other design software programs³: first order linearisation of model around the expectation of random effects (FO)

- Only for continuous data

- Performs well but has limitations in case of complex nonlinear models and/or large variability

• New approaches needed for computation of FIM

- Without model linearisation
- For both continuous and discrete data
 - \Rightarrow Monte Carlo Adaptive Gaussian Quadrature (MC-AGQ)^{4, 5}
 - \Rightarrow Monte Carlo Hamiltonian Monte Carlo (MC-HMC)⁶

² PFIM group. www.pfim.biostat.fr.

³ Nyberg et al. Br J Clin Pharmacol, 2014.

⁴ Nguyen and Mentré. Comput Stat Data Anal, 2014.

⁵ Ueckert and Mentré. *Comput Stat Data Anal*, 2016.
⁶ Riviere, Ueckert and Mentré. *Biostatistics*, 2016.

Methods for Robust designs and Applications Discu Discussion

Parameter and model uncertainty in designs

Optimal design depends on knowledge on model and parameters

- Local planification: given the model m and parameter values Ψ_m^*
- Widely used criterion: D-optimality

Alternative: Robust designs

- Taking into account uncertainty on parameters
- Across a set of candidate models

Contents

Introduction

2 New methods for computation of FIM and Applications

- Methods
- Evaluation by CTS
- Illustration in D-optimal designs for binary and count data

Extension of methods for Robust designs and Applications

- Methods
- Illustration in Robust optimal designs for count data
- Discussion

Introduction Methods for computation of FIM and Applicatio

Contents

Introduction

2 New methods for computation of FIM and Applications

- Methods
- Evaluation by CTS
- Illustration in D-optimal designs for binary and count data
- Extension of methods for Robust designs and Applications
 - Methods
 - Illustration in Robust optimal designs for count data
- 4 Discussion

Introduction 000000

Methods for Robust designs and Applications Discussi

New methods for computation of FIM in NLMEM

Population FIM for one group design: $\mathcal{M}(\Psi, \Xi) = N \times \mathcal{M}(\Psi, \xi)$ Population design $\Xi = \{\xi, N\}$ with identical elementary design ξ in all *N* subjects

Elementary FIM: $\mathcal{M}(\Psi, \xi) = E_{\mathbf{y}}\left(\frac{\partial \log(L(y, \Psi))}{\partial \Psi} \frac{\partial \log(L(y, \Psi))}{\partial \Psi}^T\right)$

with the **likelihood**:

$$L(y, \Psi) = \int p(y|b, \Psi)p(b|\Psi)db$$

where $p(y|b, \Psi)$: pdf of observations *y* given random effects *b*
 $p(b|\Psi)$: pdf of *b*

 \Rightarrow Two integrals to compute: w.r.t. y and w.r.t. b

- Use of MC and AGQ ⁵
- Use of MC and HMC (in Stan⁷)⁶

 \Rightarrow Both approaches **evaluated by CTS** on several examples (from ⁸)

⁵Ueckert and Mentré. Comput Stat Data Anal, 2016.

⁶Riviere, Ueckert and Mentré. *Biostatistics*, 2016.

⁷Stan Development Team. Stan: A C++ Library for Probability and Sampling.

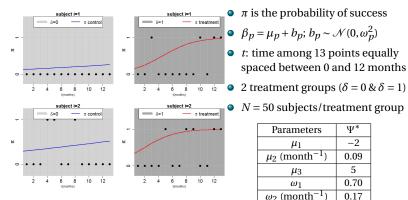
⁸Ogungbenro et al. J Pharmacokinet Pharmacodyn, 2011.

Introduction Methods

Methods for Robust designs and Applications Discussio

Evaluation by CTS: Example of binary response

Logistic model for repeated binary response at several time points with treatment increasing the slope of the logit of the response with time 5,6,9



 $logit(\pi) = \beta_1 + \beta_2(1 + \mu_3 \delta)t$, where

⁵Ueckert and Mentré. Comput Stat Data Anal, 2016.

⁶Riviere, Ueckert and Mentré. *Biostatistics*, 2016.

⁹Lestini, Ueckert and Mentré. PODE, Uppsala, Sweden, 2016.

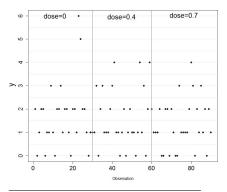
Introduction 000000 Methods for computation of FIM and Applications

Methods for Robust designs and Applications Discussion

Evaluation by CTS: Example of count response

Poisson model for repeated count response at several dose levels with a full Imax model describing the relationship between $\log(\lambda)$ and dose ^{5,6}

$$P(y=k|b) = \frac{\lambda^k exp(-\lambda)}{k!}$$



with $\log(\lambda) = \beta_1 \left(1 - \frac{d}{d + \beta_2} \right)$

- $\beta_p = \mu_p exp(b_p); b_p \sim \mathcal{N}(0, \omega_p^2)$
- *d*: dose among 3 levels (0, 0.4, 0.7)
- *N* = 20 subjects, *n*_{rep} = 30 replications/subject/dose

Parameters	Ψ^*
μ_1	1
μ_2	0.5
ω_1	0.3
ω2	0.3

⁵Ueckert and Mentré. Comput Stat Data Anal, 2016.
⁶Riviere, Ueckert and Mentré. Biostatistics, 2016.

Methods for Robust designs and Applications Discussio

Evaluation by CTS: Methods

Comparison of several approaches for evaluation of FIM:

- MC-HMC implemented in R package *MIXFIM* available on CRAN ¹⁰
 - 1000 MC / 200 HMC with 500 burn
 - 1000 MC / 1000 HMC with 1000 burn
 - 5000 MC / 200 HMC with 500 burn
 - 5000 MC / 1000 HMC with 1000 burn
- MC-AGQ implemented in R: 5000 MC / 10 AGQ nodes
- Laplace approximation (LA): 5000 MC / 1 AGQ node

with clinical trial simulations (CTS):

- Simulation of 1000 datasets with $\Psi = \Psi^*$ using R
- For each dataset: estimate $\hat{\Psi}$ using Monolix 4.3

in terms of:

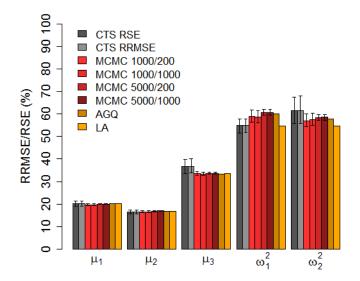
- observed RSE and RRMSE from CTS
- versus predicted RSE from expected FIM

¹⁰ Riviere and Mentré. R Package MIXFIM, 2015.

Introduction 000000

Methods for Robust designs and Applications Dis

Evaluation by CTS: Results for binary example

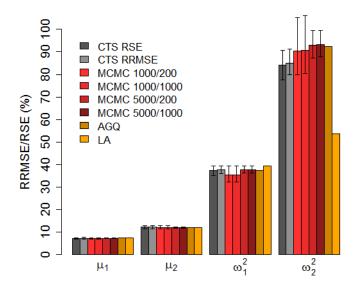


Introduction 000000

Methods for Robust designs and Applications Di

Discussion

Evaluation by CTS: Results for count example



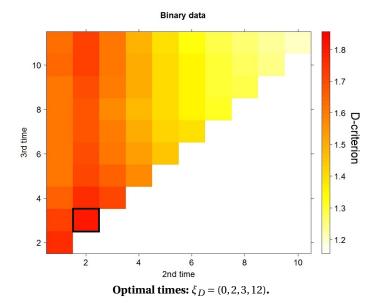
D-optimal designs for discrete data: Methods

		Binary example	Count example
Constraints	N n _{rep} n	100 subjects 1 replication 4 times	60 subjects 10 replications 3 doses
	fixed design variables	$t_1 = 0, t_4 = 12$	$d_1 = 0$
	optimised design variables	<i>t</i> ₂ , <i>t</i> ₃ from 1 to 11 (<i>step</i> = 1, no repetition)	d_2 , d_3 from 0.1 to 1 (<i>step</i> = 0.1, no repetition)
Optimisation method	Evaluation of FIM for all possible designs	500 Quasi MC ¹¹ 3 AGQ nodes	5000 MC 200 HMC
	D-optimality criterion Φ_D	$\det(\mathcal{M}(\Psi^*,\Xi))^{1/P}$	$\det(\mathcal{M}(\Psi^*,\Xi))^{1/P}$

¹¹Ueckert and Mentré. CM Statistics Conference, London, UK, 2015.

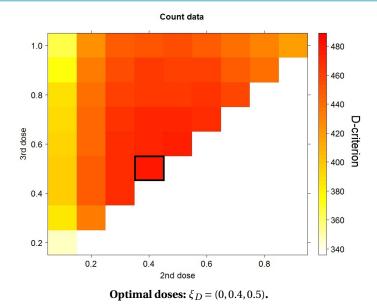
 Methods for Robust designs and Applications Dis

D-optimal designs for discrete data: Results



Methods for Robust designs and Applications Dis

D-optimal designs for discrete data: Results



Conclusion (1)

New methods developed for computation of FIM avoiding FO

- MC-AGQ and MC-HMC based methods
 - adapted for continuous and discrete NLMEM
 - high agreement with CTS
 - new tool for designs using MC-HMC: R package MIXFIM on CRAN
- Enable first applications to design optimisation for binary and count data

Contents

Introduction

- **2** New methods for computation of FIM and Applications
 - Methods
 - Evaluation by CTS
 - Illustration in D-optimal designs for binary and count data

Extension of methods for Robust designs and Applications

- Methods
- Illustration in Robust optimal designs for count data
- Discussion

Methods for Robust designs (1)

Robustness w.r.t. parameters of a given model

• Robust FIM, assuming a distribution $p(\Psi)$ on the parameters

 $\mathcal{M}_R(\Xi) = \frac{E_\Psi}{W}(\mathcal{M}(\Psi,\Xi))$

- two integrals w.r.t. *y* and w.r.t. *b* for evaluation of $\mathcal{M}(\Psi, \Xi)$
- one supplementary integral w.r.t. Ψ for evaluation of $\mathcal{M}_R(\Xi)$
- Evaluation by **MC-HMC** using Stan (drawing jointly Ψ and *y* by MC)
- DE-criterion for optimisation of robust design Ξ_{DE}

$$\Phi_{DE}(\Xi) = \det(\mathcal{M}_R(\Xi))^{1/P}$$

with P, number of population parameters of the model

Methods for Robust designs (2)

Robustness w.r.t. a set of M candidate models

 D-criterion for optimisation of design Ξ_{D,m} for each model m given population parameter values Ψ^{*}_m

$$\Phi_{D,m}(\Xi) = \det(\mathcal{M}(\Psi_m^*, \Xi))^{1/P_m}$$

with P_m , number of population parameters of model m

• Compound D-criterion 12 , 13 for optimisation of common design Ξ_{CD}

$$\Phi_{CD}(\Xi) = \prod_{m=1}^{M} \Phi_{D,m}(\Xi)^{\alpha_m} = \prod_{m=1}^{M} \left(\det(\mathcal{M}(\Psi_m^*, \Xi)) \right)^{\alpha_m/P_m}$$

with α_m , weight quantifying the balance between *M* models, $\sum_m \alpha_m = 1$

Implementation in R

- Extension of *MIXFIM* for evaluation of robust FIM using MC-HMC
- Use of compound optimality criterion to combine several models

¹²Atkinson et al. J Stat Plan Inference, 2008.

¹³ Nguyen et al. Pharm Stat, 2016.

Discussion

Illustration in Robust designs for count data

Application to design optimisation in the previous count example

- Robust optimal design accounting for uncertainty on parameters
 - Using robust FIM (5000 MC 200 HMC) and DE-optimality criterion
 - Comparison between Ξ_D and Ξ_{DE} in terms of
 - Allocation of optimal doses
 - Relative efficiencies of a design Ξ w.r.t. an optimal design

$$D\text{-eff}(\Xi) = \frac{\Phi_D(\Xi)}{\Phi_D(\Xi_D)} \text{ and } DE\text{-eff}(\Xi) = \frac{\Phi_{DE}(\Xi)}{\Phi_{DE}(\Xi_{DE})}$$

• Robust optimal design across M candidate models

- Using FIM by MC-HMC (5000 MC 200 HMC) and compound D-optimality ($\alpha_m = 1/M$)
- Comparison between different $\Xi_{D,m}$ and Ξ_{CD} in terms of
 - Allocation of optimal doses
 - Relative efficiencies of a design Ξ w.r.t. an optimal design

$$D\text{-eff}_m(\Xi) = \frac{\Phi_{D,m}(\Xi)}{\Phi_{D,m}(\Xi_{D,m})} \text{ and } CD\text{-eff}(\Xi) = \frac{\Phi_{CD}(\Xi)}{\Phi_{CD}(\Xi_{CD})}$$

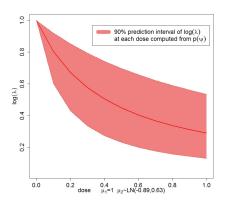
Introduction Methods for computation of FIM and Applications

Methods for Robust designs and Applications Discussion

Robust design for count data: uncertainty on parameters

Poisson model for repeated count response at several dose levels with a full Imax model describing the relationship between $log(\lambda)$ and dose

$$P(y=k|b) = \frac{\lambda^k exp(-\lambda)}{k!}$$



with
$$\log(\lambda) = \beta_1 \left(1 - \frac{d}{d + \beta_2} \right)$$

•
$$\beta_p = \mu_p exp(b_p); b_p \sim \mathcal{N}(0, \omega_p^2)$$

Assuming uncertainty on parameters μ₂ and ω₂

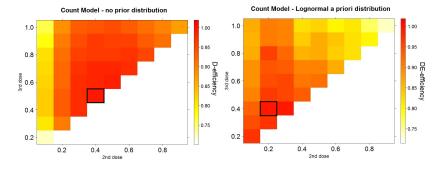
	Ψ^*	$p(\Psi)$
μ_1	1	1
μ_2	0.5	$\mathcal{LN}(-0.89, 0.63)$
		$E(\mu_2) = 0.5; CV(\mu_2) = 70\%$
ω_1	0.3	0.3
ω_2	0.3	$\mathcal{LN}(-1.50, 0.77)$
		$E(\omega_2) = 0.3; CV(\omega_2) = 90\%$

- Optimisation of 3 doses with
 - $N = 60, n_{rep} = 10$

- fixing
$$d_1 = 0$$

- choosing d_2 and d_3 from 0 to 1

Robust design for count data: uncertainty on parameters



Optimal doses: $\xi_D = (0, 0.4, 0.5)$ **.**

Optimal doses: $\xi_{DE} = (0, 0.2, 0.4)$.

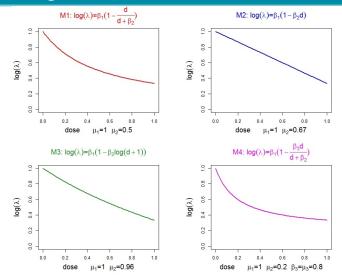
Efficiencies

Design Ξ	$D\text{-eff}(\Xi)$	$DE-eff(\Xi)$
Ξ_D	100%	94.1%
$\{N=60, \xi=(0,0.4,0.5)\}$		
Ξ_{DE}	93.3%	100%
$\{N=60, \xi=(0,0.2,0.4)\}$		

Introduction Methods for computation of FIM and Applications

Discussion

Robust design for count data: 4 candidate models



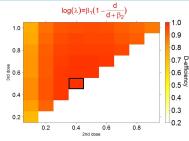
- Fixed effects μ_1 , μ_2 for M2, M3, M4 chosen to have similar mean value of log(λ) as for M1 at dose 0 and at dose 1
- Variability $\omega_1 = \omega_2 = 0.3$

Introduction Methods for computation of FIM and Application

Methods for Robust designs and Applications

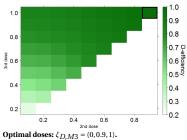
Discussion

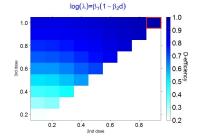
Robust design for count data: 4 candidate models



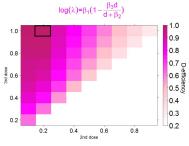
Optimal doses: $\xi_{D,M1} = (0, 0.4, 0.5)$.

$log(\lambda)=\beta_1(1-\beta_2log(d+1))$





Optimal doses: $\xi_{D,M2} = (0, 0.9, 1)$.



Optimal doses: $\xi_{D,M4} = (0, 0.2, 1)$.

Robust design for count data: 4 candidate models

D-efficiencies

$$D\text{-eff}_m(\Xi) = \frac{\Phi_{D,m}(\Xi)}{\Phi_{D,m}(\Xi_{D,m})}$$

Design Ξ	$\mathrm{D} ext{-}\mathrm{eff}_{M1}(\Xi)$	$\mathrm{D\text{-}eff}_{M2}(\Xi)$	$\mathrm{D}\text{-}\mathrm{eff}_{M3}(\Xi)$	$\mathrm{D\text{-}eff}_{M4}(\Xi)$
$\Xi D,M1 \{N = 60, \xi = (0, 0.4, 0.5)\}$	100%	60.8%	68.9%	50.3%
$\Xi_{D,M2} \\ \{N = 60, \xi = (0, 0.9, 1)\}$	87.0%	100%	100%	30.8%
$\Xi_{D,M3} \{N = 60, \xi = (0, 0.9, 1)\}$	87.0%	100%	100%	30.8%
$\Xi_{D,M4} \\ \{N = 60, \xi = (0, 0.2, 1)\}$	88.4%	85.7%	85.4%	100%

Robust design for count data: 4 candidate models

D-efficiencies

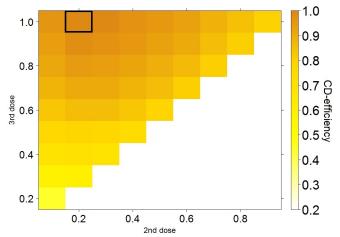
 $\mathrm{D\text{-}eff}_m(\Xi) = \frac{\Phi_{D,m}(\Xi)}{\Phi_{D,m}(\Xi_{D,m})}$

Design Ξ	$\mathrm{D} ext{-}\mathrm{eff}_{M1}(\Xi)$	$\mathrm{D\text{-}eff}_{M2}(\Xi)$	$\mathrm{D\text{-}eff}_{M3}(\Xi)$	$\mathrm{D\text{-}eff}_{M4}(\Xi)$
$\Xi_{D,M1} \{N = 60, \xi = (0, 0.4, 0.5)\}$	100%	60.8%	68.9%	50.3%
$\Xi_{D,M2} \\ \{N = 60, \xi = (0, 0.9, 1)\}$	87.0%	100%	100%	30.8%
$\Xi_{D,M3} \\ \{N = 60, \xi = (0, 0.9, 1)\}$	87.0%	100%	100%	30.8%
$\Xi_{D,M4} \\ \{N = 60, \xi = (0, 0.2, 1)\}$	88.4%	85.7%	85.4%	100%

• Important loss of efficiency in some scenarios where the model is not correctly pre-specified

Robust design for count data: 4 candidate models

Compound D-optimal design: $\xi_{CD} = (0, 0.2, 1)$.



Combination of 4 models

Robust design for count data: 4 candidate models

 $\begin{aligned} & \textbf{D-efficiencies} \\ & \textbf{D-eff}_{m}(\Xi) = \frac{\Phi_{D,m}(\Xi)}{\Phi_{D,m}(\Xi_{D,m})} \end{aligned}$

CD-efficiencies

$$\text{CD-eff}(\Xi) = \frac{\Phi_{CD}(\Xi)}{\Phi_{CD}(\Xi_{CD})}$$

Design Ξ	$\mathrm{D\text{-}eff}_{M1}(\Xi)$	$\mathrm{D\text{-}eff}_{M2}(\Xi)$	$\mathrm{D\text{-}eff}_{M3}(\Xi)$	$\text{D-eff}_{M4}(\Xi)$	$\text{CD-eff}(\Xi)$
$\frac{\Xi_{D,M1}}{\{N = 60, \xi = (0, 0.4, 0.5)\}}$	100%	60.8%	68.9%	50.3%	75.5%
$\Xi_{D,M2} \\ \{N = 60, \xi = (0, 0.9, 1)\}$	87.0%	100%	100%	30.8%	80.2%
$\Xi_{D,M3} \\ \{N = 60, \xi = (0, 0.9, 1)\}$	87.0%	100%	100%	30.8%	80.2%
$\Xi_{D,M4} \\ \{N = 60, \xi = (0, 0.2, 1)\}$	88.4%	85.7%	85.4%	100%	100%
$\Xi_{CD} \\ \{N = 60, \xi = (0, 0.2, 1)\}$	88.4%	85.7%	85.4%	100%	100%

• Good performance of the compound D-optimal design

Introduction Methods for computation of FIM and Applications

Conclusion (2)

• Proposed methods for Robust designs

- Extension of R package *MIXFIM* to compute the DE-optimality criterion from robust FIM
- Use of compound optimality criterion to combine several candidate models
- MC-HMC, relevant approach allowing for the first time robust design optimisation for repeated count data
 - Robustness w.r.t. parameters: different optimal designs with *versus* without uncertainty on parameters
 - Robustness w.r.t. models: compound D-optimal design providing a good compromise for different candidate models

Ongoing work

• Robustness w.r.t. parameters AND models: use of robust FIM in the compound optimality criterion

Contents

Introduction

- **2** New methods for computation of FIM and Applications
 - Methods
 - Evaluation by CTS
 - Illustration in D-optimal designs for binary and count data
- Extension of methods for Robust designs and Applications
 - Methods
 - Illustration in Robust optimal designs for count data

Discussion

Discussion

Summary

- New methods developed for computation of FIM avoiding FO
 - MC-AGQ and MC-HMC: relevant methods for designs
 - New tool for designs using MC-HMC: R package MIXFIM on CRAN
 - Computationally challenging, much slower than FO approach
- Extension of these methods to propose robust optimal designs accounting for uncertainty w.r.t. parameters and/or models

Perspectives

- Replacement of MC in MC-HMC by more efficient approach: quasi-random sampling ¹¹
- Evaluation of two-stage designs
 - Approaches already proposed and evaluated on continuous data ^{14, 15}
 - To be evaluated in models for discrete data, accounting for uncertainty w.r.t. parameters and/or models
- Individual and Population Bayesian information matrix

¹¹Ueckert and Mentré. CM Statistics Conference, London, UK, 2015.

¹⁴Dumont, Chenel, Mentré. Commun Stat Simul C, 2016.

¹⁵ Lestini, Dumont, Mentré. Pharm Res, 2015.

Introduction	Methods for computation	of FIM	and Applica

Back-up

Introduction Methods for computation of FIM and Applications

NLMEM: Notations

For continuous data: For discrete data: $y_i = f(g(\mu, b_i), \xi_i) + \epsilon_i$ $p(y_i|b_i) = \prod_{j=1}^{n_i} h(y_{ij}, g(\mu, b_i), \xi_i)$ with

$$y_i = (y_{i1}, \dots, y_{in_i})^T$$
 response for individual i ($i = 1, \dots, N$)
 f, h structural model

 ξ_i elementary design for subject *i*

 $\beta_i = g(\mu, b_i)$ individual parameters vector

 μ vector of fixed effects

 b_i vector of random effects for individual $i, b_i \sim \mathcal{N}(0, \Omega)$

 ϵ_i vector of residual errors, $\epsilon_i \sim \mathcal{N}(0, \Sigma)$ and Σ diagonal matrix

Ψ: Population parameters (μ , ω , σ)

 $p(y_i|b_i) = \mathcal{N}(f, \Sigma)$

Introduction 000000

Methods for Robust designs and Applications Discussi

Fisher Information Matrix (FIM)

Population FIM for one group design: $\mathcal{M}(\Psi, \Xi) = N \times \mathcal{M}(\Psi, \xi)$ Population design $\Xi = \{\xi, N\}$ with identical elementary design ξ in all *N* subjects

Elementary FIM:
$$\mathcal{M}(\psi, \xi) = E_y \left(\frac{\partial \log(L(y, \psi))}{\partial \psi} \frac{\partial \log(L(y, \psi))}{\partial \psi}^T \right)$$

with the likelihood:

$$L(y, \psi) = \int p(y|b, \psi) p(b|\psi) db$$

where $p(y|b,\psi)$: pdf of *y* given the random effects *b* $p(b|\psi)$: pdf of *b* Introduction 000000 ethods for computation of FIM and Applications

Methods for Robust designs and Applications Dis

MC-HMC method for FIM evaluation

$$\mathcal{M}(\psi,\xi) = E_{\mathcal{Y}}\left(\frac{\partial \log(L(y,\psi))}{\partial \psi} \frac{\partial \log(L(y,\psi))}{\partial \psi}^{T}\right)$$

troduction Methods for computation of FIM and Appli

Discussion

MC-HMC method for FIM evaluation

$$\mathcal{M}(\psi,\xi) = E_{y} \left(\frac{\partial \log(L(y,\psi))}{\partial \psi} \frac{\partial \log(L(y,\psi))}{\partial \psi}^{T} \right)$$
$$\mathcal{M}(\psi,\xi)_{k,l} = E_{y} \left(\underbrace{\frac{\partial \log(L(y,\psi))}{\partial \psi_{k}} \frac{\partial \log(L(y,\psi))}{\partial \psi_{l}}^{T}}_{D_{y}} \right)$$
Monte Carlo - MC

MC-HMC method for FIM evaluation

$$\mathcal{M}(\psi,\xi) = E_{y} \left(\frac{\partial \log(L(y,\psi))}{\partial \psi} \frac{\partial \log(L(y,\psi))}{\partial \psi}^{T} \right)$$
$$\mathcal{M}(\psi,\xi)_{k,l} = E_{y} \left(\underbrace{\frac{\partial \log(L(y,\psi))}{\partial \psi_{k}} \frac{\partial \log(L(y,\psi))}{\partial \psi_{l}}^{T}}_{D_{y}} \right)$$
Monte Carlo - MC

After calculation... $D_y \iff$

$$\int_{b_1} \frac{\partial [\log(p(y|b_1,\psi)p(b_1|\psi))}{\partial \psi_k} \frac{p(y|b_1,\psi)p(b_1|\psi)}{\int p(y|b,\psi)p(b|\psi)db} db_1 \\ \int_{b_2} \frac{\partial [\log(p(y|b_2,\psi)p(b_2|\psi))}{\partial \psi_l} \frac{p(y|b_2,\psi)p(b_2|\psi)}{\int p(y|b,\psi)p(b|\psi)db} db_2 \\ \int_{b_2} \frac{\partial [\log(p(y|b_2,\psi)p(b_2|\psi))}{\partial \psi_l} \frac{p(y|b_2,\psi)p(b_2|\psi)}{\partial \psi_l} db_2 \\ \int_{b_2} \frac{\partial [\log(p(y|b_2,\psi)p(b_2|\psi)]}{\partial \psi_l} \frac{p(y|b_2|\psi)p(b_2|\psi)}{\partial \psi_l} db_2 \\ \int_{b_2} \frac{\partial [\log(p(y|b_2|\psi)p(b_2|\psi)p(b_2|\psi)p(b_2|\psi)]}{\partial \psi_l} db_2 \\ \int_{b_2} \frac{\partial [\log(p(y|b_2|\psi)p(b_2|\psi)p$$

troduction Methods for computation of FIM and Applicat

Discussion

MC-HMC method for FIM evaluation

$$\mathcal{M}(\psi,\xi) = E_{y} \left(\frac{\partial \log(L(y,\psi))}{\partial \psi} \frac{\partial \log(L(y,\psi))}{\partial \psi}^{T} \right)$$
$$\mathcal{M}(\psi,\xi)_{k,l} = E_{y} \left(\underbrace{\frac{\partial \log(L(y,\psi))}{\partial \psi_{k}} \frac{\partial \log(L(y,\psi))}{\partial \psi_{l}}^{T}}_{D_{y}} \right)$$
Monte Carlo - MC

After calculation... $D_y \iff$

ntroduction Methods for computation of FIM and Applicati

MC-HMC method for FIM evaluation

$$\begin{aligned} \mathcal{M}(\psi,\xi) &= E_{y} \left(\frac{\partial \log(L(y,\psi))}{\partial \psi} \frac{\partial \log(L(y,\psi))}{\partial \psi} T \right) \\ \mathcal{M}(\psi,\xi)_{k,l} &= E_{y} \left(\underbrace{\frac{\partial \log(L(y,\psi))}{\partial \psi_{k}} \frac{\partial \log(L(y,\psi))}{\partial \psi_{l}} T}_{D_{y}} \right) \\ \text{Monte Carlo - MC} \\ \text{After calculation...} \quad D_{y} \iff \\ \int_{b_{1}} \frac{\partial (\log(p(y|b_{1},\psi)p(b_{1}|\psi)))}{\partial \psi_{k}} \underbrace{\int_{p(y|b_{1},\psi)p(b|\psi)db}}_{(p(y|b_{1}\psi)p(b|\psi)db} db_{1} \cdot \int_{b_{2}} \frac{\partial (\log(p(y|b_{2},\psi)p(b_{2}|\psi)))}{\partial \psi_{l}} \underbrace{\int_{p(y|b,\psi)p(b|\psi)db}}_{(p(y|b,\psi)p(b|\psi)db} db_{2} \cdot \int_{b_{2}} \frac{\partial (\log(p(y|b_{2},\psi)p(b_{2}|\psi)))}{\partial \psi_{l}} \underbrace{\int_{p(y|b,\psi)p(b|\psi)db}}_{(p(y|b,\psi)p(b|\psi)db} db_{2} \cdot \int_{b_{2}} \frac{\partial (\log(p(y|b_{2},\psi)p(b_{2}|\psi)))}{\partial \psi_{l}} \underbrace{\int_{p(y|b,\psi)p(b|\psi)db}}_{(p(y|b,\psi)p(b|\psi)db} db_{1} \cdot \int_{b_{2}} \frac{\partial (\log(p(y|b,\psi)p(b|\psi)))}{\partial \psi_{l}} \underbrace{\int_{p(y|b,\psi)p(b|\psi)db}}_{(p(y|b,\psi)p(b|\psi)db} db_{2} \cdot \int_{b_{2}} \frac{\partial (\log(p(y|b,\psi)p(b|\psi)))}{\partial \psi_{l}} db_{2} \cdot \int_{b_{2}} \frac{\partial (\log(p(y|b,\psi)p(b|\psi)))}{\partial \psi_{l}} db_{2} \cdot \int_{b_{2}} \frac{\partial (\log(p(y|b,\psi)p(b|\psi)))}{\partial \psi_{l}} db_{2} \cdot \int_{b_{2}} \frac{\partial (\log(p(y|b,\psi)p(b|\psi))}{\partial \psi_{l}} db_$$

Markov Chains Monte Carlo - MCMC

The (k, l) term of the FIM estimated as:

$$\tilde{\mathcal{M}}(\psi,\xi)_{k,l} = \frac{1}{R} \sum_{r=1}^{R} A_{k,r}^{(1)} A_{l,r}^{(2)}$$

with $A_{k,r}^{(1)} = \frac{1}{M} \sum_{m=1}^{M} \frac{\partial \left(\log(p(y_r | b_{m,r}^{(1)}, \psi) p(b_{m,r}^{(1)})) \right)}{\partial \psi_k}$ $A_{l,r}^{(2)} = \frac{1}{M} \sum_{m=1}^{M} \frac{\partial \left(\log(p(y_r | b_{m,r}^{(2)}, \psi) p(b_{m,r}^{(2)})) \right)}{\partial \psi_l}$

where

- $(y_r)_{r=1,...,R}$ is a *R*-sample of the marginal distribution of *y* (*MC*)
- $(b_{m,r}^{(1)})_{m=1,...,M}$ and $(b_{m,r}^{(2)})_{m=1,...,M}$ are 2*R M*-samples of the conditional density of *b* given y_r (*HMC*)

To be symmetric
$$\Rightarrow \hat{\mathcal{M}}(\psi, \xi) = \frac{\tilde{\mathcal{M}}(\psi, \xi) + \tilde{\mathcal{M}}(\psi, \xi)^T}{2}$$

htroduction Methods for computation of FIM and Application

MC-HMC method for Robust FIM evaluation

Robust FIM: $\mathcal{M}_R(\xi) = E_{\Psi}(\mathcal{M}(\Psi, \xi))$

$$\mathcal{M}_{R}(\xi) = E_{\psi} \left(E_{y} \left(\frac{\partial \log(L(y,\psi))}{\partial \psi} \frac{\partial \log(L(y,\psi))}{\partial \psi}^{T} \right) \right)$$
$$\mathcal{M}_{R}(\xi)_{k,l} = E_{\psi} \left(E_{y} \left(\frac{\partial \log(L(y,\psi))}{\partial \psi_{k}} \frac{\partial \log(L(y,\psi))}{\partial \psi_{l}}^{T} \right) \right)$$
Monte Carlo - MC - joint sampling of ψ and y

Introduction Methods for computation of FIM and Applications

MC-HMC method for Robust FIM evaluation

$$\mathcal{M}_{R}(\xi) = E_{\psi} \left(E_{y} \left(\frac{\partial \log(L(y,\psi))}{\partial \psi} \frac{\partial \log(L(y,\psi))}{\partial \psi}^{T} \right) \right)$$
$$\mathcal{M}_{R}(\xi)_{k,l} = E_{\psi} \left(E_{y} \left(\underbrace{\frac{\partial \log(L(y,\psi))}{\partial \psi_{k}} \frac{\partial \log(L(y,\psi))}{\partial \psi_{l}}^{T}}_{D_{y}} \right) \right)$$
Monte Carlo - MC - joint sampling of ψ and y

$$D_{y} \longleftrightarrow E\left(\frac{\partial(\log(p(y|b,\psi)p(b|\psi)))}{\partial\psi_{k}} \middle| Y\right) \cdot E\left(\frac{\partial(\log(p(y|b,\psi)p(b|\psi)))}{\partial\psi_{l}} \middle| Y\right)$$

Markov Chains Monte Carlo - MCMC

The (k, l) term of the FIM estimated as:

$$\tilde{\mathcal{M}}_{R}(\xi)_{k,l} = \frac{1}{R} \sum_{r=1}^{R} B_{k,r}^{(1)} \cdot B_{l,r}^{(2)}$$

with $B_{k,r}^{(1)} = \frac{1}{M} \sum_{m=1}^{M} \frac{\partial \left(\log(p(y_r | b_{m,r}^{(1)}, \psi_r) p(b_{m,r}^{(1)}, \psi_r) \right)}{\partial \psi_k}$ $B_{l,r}^{(2)} = \frac{1}{M} \sum_{m=1}^{M} \frac{\partial \left(\log(p(y_r | b_{m,r}^{(2)}, \psi_r) p(b_{m,r}^{(2)}, \psi_r) \right)}{\partial \psi_l}$

where

- $(\Psi_r, y_r)_{r=1,...,R}$ is a *R*-sample of the joint distribution of (Ψ, y) (*MC*)
- $(b_{m,r}^{(1)})_{m=1,...,M}$ and $(b_{m,r}^{(2)})_{m=1,...,M}$ are 2*R M*-samples of the conditional density of *b* given y_r (*HMC*)

To be symmetric
$$\Rightarrow \hat{\mathcal{M}}_R(\xi) = \frac{\tilde{\mathcal{M}}_R(\xi) + \tilde{\mathcal{M}}_R(\xi)^T}{2}$$