Statistical inference for comparing small population groups

Holger Dette, Ruhr-Universität Bochum Kathrin Möllenhoff, Ruhr-Universität Bochum Kirsten Schorning, Ruhr-Universität Bochum Stanislav Volgushev, University of Toronto Frank Bretz, Novartis Basel

FP7 HEALTH 2013 - 602552

イロト 不得下 イヨト イヨト 二日

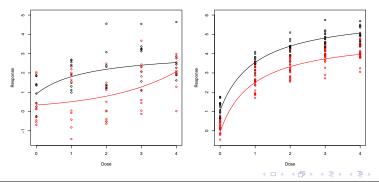
Outline

Similarity of curves

- 2 A conservative test for similarity of curves
- Optimal designs for comparing curves
- 4 Efficient tests for the similarity of curves
- 5 Further results and extensions

Comparing curves

- Two dose response curves from different populations (e.g. European, Japanese)
- Are the two curves similar? If they are: extrapolating data from one population to the other might be possible



Holger Dette Statistical inference for comparing small population groups

Comparing curves

• Two dose response curves (from two samples)

$$egin{aligned} Y_{ijk} &= m_i(x_{ij},artheta_i) + arepsilon_{ijk} \;; \quad i=1,2; \ j=1,\ldots,\ell_i \;; \quad k=1,\ldots,n_{ij}, \end{aligned}$$

- $arepsilon_{ijk}$ independent $\sim \mathcal{N}(0,\sigma_i^2)$ (i=1,2)
- $x_{ij} \in \mathcal{X}$ (dose levels)
- $\vartheta_i \in \mathbb{R}^{d_i}$ (parameter in model m_i)

Problem of similarity:

• Problem:

Are the dose response curves m_1 and m_2 similar?

• If they are: information from one

other

Problem of similarity:

• Problem:

Are the dose response curves m_1 and m_2 similar?

• If they are:

information from one population can be transferred to the other

Measures of similarity

• We need a **measure** for the similarity of m_1 and m_2 . Here we use the **maximum deviation between the curves**:

$$d_\infty(m_1,m_2) = \max_{x\in\mathcal{X}} |m_1(x,artheta_1) - m(x,artheta_2)|$$

• Hypothesis of similarity:

 $H_0: d_\infty(m_1, m_2) \ge \Delta$ versus $H_1: d_\infty(m_1, m_2) < \Delta$ (here Δ is a pre-specified constant).

Example: maximal deviation

• EMAX and Log-linear model $(\mathcal{X} = [0, 1])$

$$m_1(x, \vartheta_1) = 0.2 + \frac{0.7x}{0.2 + x}, \quad m_2(x, \vartheta_2) = 0.74 + 0.33 \log(x + 0.2)$$

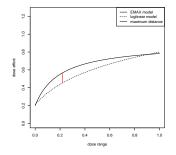


Figure: EMAX and log-linear model.

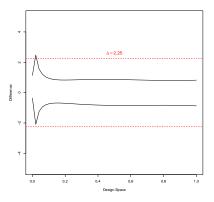
• Hypothesis of similarity:

 $H_0: d_\infty(m_1,m_2) \geq \Delta$ versus $H_1: d_\infty(m_1,m_2) < \Delta$

• Construct a uniform confidence band for the difference

$$m_1(\cdot,\vartheta_1)-m_2(\cdot,\vartheta_2)$$

 Reject H₀ (i.e. decide for similarity) if the confidence band is contained in the rectangle X × [-Δ, Δ]



- \Rightarrow $H_0: d_\infty(m_1, m_2) \ge 2.25$ can **not** be rejected!
- Note: If the confidence band is more narrow, the test has more power!

Two designs for **two** samples (of sizes n_1 and n_2)

$$\xi_1 = \begin{pmatrix} x_{11} & \cdots & x_{1\ell_1} \\ n_{11} & \cdots & n_{1\ell_1} \end{pmatrix} \qquad \xi_2 = \begin{pmatrix} x_{21} & \cdots & x_{2\ell_2} \\ n_{21} & \cdots & n_{2\ell_2} \end{pmatrix}$$

•
$$n_1 = \sum_{j=1}^{\ell_1} n_{1j}$$
 , $n_2 = \sum_{j=1}^{\ell_2} n_{2j}$

- $\hat{\vartheta}_i$: maximum likelihood estimate of ϑ_i (i = 1, 2)
- Estimate for the difference of the two curves

$$m_1(x,\hat{\vartheta}_1) - m_2(x,\hat{\vartheta}_2)$$

• Confidence band for the **difference** $m_1(x, \vartheta_1) - m_2(x, \vartheta_2)$

$$m_1(x, \hat{\vartheta}_1) - m_2(x, \hat{\vartheta}_2) \pm \frac{D}{\sqrt{n_1 + n_2}} \hat{\gamma}(x, \xi_1, \xi_2)$$

where

- γ̂(x, ξ₁, ξ₂) is an estimate of the variance γ(x, ξ₁, ξ₂) of the
 (standardized) predicted difference.
- *D* is a critical value *D* determined by parametric bootstrap.
- Note:
 - the width of the band at the point x is approximately 2Dγ(x, ξ₁, ξ₂) (formula is too complicated to be presented here)
 - $\gamma(x, \xi_1, \xi_2)$ depends on the designs of the two samples

• Confidence band for the difference $m_1(x, \vartheta_1) - m_2(x, \vartheta_2)$

$$m_1(x, \hat{\vartheta}_1) - m_2(x, \hat{\vartheta}_2) \pm \frac{D}{\sqrt{n_1 + n_2}} \hat{\gamma}(x, \xi_1, \xi_2)$$

where

- γ̂(x, ξ₁, ξ₂) is an estimate of the variance γ(x, ξ₁, ξ₂) of the
 (standardized) predicted difference.
- *D* is a critical value *D* determined by parametric bootstrap.

Note:

- the width of the band at the point x is approximately 2Dγ(x, ξ₁, ξ₂) (formula is too complicated to be presented here)
- $\gamma(x,\xi_1,\xi_2)$ depends on the designs of the two samples

Improvements

In this talk we will improve the construction of confidence bands in two directions

- Efficient designs for the construction of confidence bands Dette, H., Schorning, K. (2016) Optimal designs for comparing curves (*Annals of Statistics*, 2016)
- An alternative (and substantially more powerful) test for the hypothesis of similarity Dette, H., Möllenhoff, K., Volgushev, S. and Bretz, F. (2015) Equivalence of dose response curves (under revision, JASA) http://arxiv.org/abs/1505.05266

Optimal designs

• Two designs

$$\xi_1 = \begin{pmatrix} x_{11} & \cdots & x_{1\ell_1} \\ n_{11} & \cdots & n_{1\ell_1} \end{pmatrix} \qquad \xi_2 = \begin{pmatrix} x_{21} & \cdots & x_{2\ell_2} \\ n_{21} & \cdots & n_{2\ell_2} \end{pmatrix}$$

• Replace:

$$rac{n_{ij}}{n_i}$$
 by $w_{ij} \in (0,1),$ $rac{n_i}{n_1+n_2}$ by $\lambda_i \in (0,1)$

• **Note:** we have to determine $(\lambda_1, \lambda_2 \text{ are fixed})$

- ℓ_1, ℓ_2 (number of different dose levels)
- x_{ij} (dose levels)
- w_{ij} (proportions of total observations taken at each dose level)

in an optimal way!

Optimal designs

- Note: two designs ξ_1, ξ_2 have to be determined $(\lambda_1, \lambda_2 \text{ are fixed})$
- An optimal pair of designs minimizes the maximum width of the confidence band for the difference m₁(x, ϑ₁) − m₂(x, ϑ₂)!
- **Recall:** the width of the band at the point x is proportional to $\gamma(x, \xi_1, \xi_2)$ where

$$\gamma^2(x,\xi_1,\xi_2) = \ldots$$

• An **optimal** pair of designs (ξ_1, ξ_2) minimizes

$$\gamma^2(\xi_1,\xi_2) = \max_{x\in\mathcal{X}}\gamma^2(x,\xi_1,\xi_2)$$

Optimal designs

- Here: we determine locally optimal designs (for simplicity)
- Robust designs can be constructed by standard methodology
 - Bayesian optimal designs
 - (standardized) minimax designs
 - Adaptive designs
 - • •

Example: calculation of optimal designs

• EMAX- and Log-linear model

$$m_1(x, \vartheta_1) = 0.2 + \frac{0.7x}{0.2 + x}, x \in [0, 1]$$

$$m_2(x, \vartheta_2) = 0.74 + 0.33 \log(x + 0.2), \ x \in [0, 1]$$

- Optimal designs
 - Group 1: 34%, 33% and 33% of the observations at dose levels 0, 0.22 and 1
 - Group 2: 34%, 33% and 33% of the observations at dose levels 0, 0.15, and 1

Example: Confidence bands

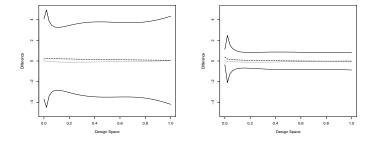


Figure: Confidence bands for the difference of the EMAX and log-linear model using a standard design (left panel) and the optimal design (right panel).

Example: power

Simulated power ($n_1 = n_2 = 20$; 250 runs) of the test for the hypothesis

 $H_0: d_\infty(m_1,m_2) \geq \Delta$ versus $H_1: d_\infty(m_1,m_2) < \Delta$

Δ	optimal design	standard design
2.00	0.76	0.02
2.25	0.87	0.05
2.50	0.91	0.07
3.00	0.86	0.15

Efficient tests for similarity

< 47 ▶

3 N (K 3 N

3

Tests based on distances

Basic idea: Estimate the distance between m_1 and m_2 directly and decide for similarity for small values of the resulting estimate

• (parametric) estimates of m_1 and m_2 :

$$\hat{m}_1 = m_1(\cdot, \hat{\vartheta}_1), \ \hat{m}_2 = m_2(\cdot, \hat{\vartheta}_2)$$

• estimate of the distance between m_1 and m_2 :

$$\hat{\pmb{d}}=d(\hat{m}_1,\hat{m}_2)$$

Tests based on distances

- $\hat{\boldsymbol{d}}$: estimate the distance between m_1 and m_2
 - Decide for similarity, i.e. reject the hypothesis

$$H_0: d(m_1, m_2) \geq \Delta$$

whenever

$$\hat{\boldsymbol{d}} = d(\hat{m}_1, \hat{m}_2) < q$$

• **Problem:** how do we find the critical value q?

Estimating the distance between two curves

• Define an estimate by

$$\mathbf{\hat{d}}_{\infty} = d_{\infty}(\hat{m}_1, \hat{m}_2) = \max_{x \in \mathcal{X}} |m_1(x, \hat{artheta}_1) - m_2(x, \hat{artheta}_2)|$$

• For large sample sizes $(n_1, n_2 \ge 25)$:

$$d_{\infty}(\hat{m}_1, \hat{m}_2) - d_{\infty}(m_1, m_2) \stackrel{a}{\sim} \frac{1}{\sqrt{n_1 + n_2}} Z$$

where Z has a complicated distribution (maximum of a stochastic process)

- Note:
 - Even for "large" sample sizes critical values are not available!
 - We are interested in small populations!

Estimating the distance between two curves

• Define an estimate by

$$\mathbf{\hat{d}}_{\infty} = d_{\infty}(\hat{m}_1, \hat{m}_2) = \max_{x \in \mathcal{X}} |m_1(x, \hat{artheta}_1) - m_2(x, \hat{artheta}_2)|$$

• For large sample sizes $(n_1, n_2 \ge 25)$:

$$d_{\infty}(\hat{m}_1, \hat{m}_2) - d_{\infty}(m_1, m_2) \stackrel{a}{\sim} \frac{1}{\sqrt{n_1 + n_2}} Z$$

where Z has a complicated distribution (maximum of a stochastic process)

- Note:
 - Even for "large" sample sizes critical values are not available!
 - We are interested in small populations!

Bootstrap test for similarity

Generate data under the null hypothesis

- Estimate ϑ_1, ϑ_2 under the restriction of the null hypothesis, that is the estimates fulfill $d(m_1, m_2) = \epsilon$
 - $\begin{array}{l} \rightsquigarrow \quad \text{constrained estimates} \quad \hat{\vartheta}_1, \hat{\vartheta}_2 \\ \text{e.g. for } d = d_{\infty}, \ \hat{\vartheta}_1, \hat{\vartheta}_2 \text{ satisfy} \\ \sup_{x \in \mathcal{X}} |m_1(x, \hat{\vartheta}_1) m_2(x, \hat{\vartheta}_2)| = \epsilon_{\infty} \end{array}$

• Generate bootstrap data (parametric bootstrap)

$$Y_{\ell,i,j}^* = m_{\ell}(x_{\ell,i},\hat{\vartheta}_{\ell}) + \hat{\sigma}_{\ell}\varepsilon_{\ell,i,j}^*$$

where $arepsilon_{\ell,i,j}^{*}$ are i.i.d. $\sim \mathcal{N}(0,1)$

Bootstrap test for similarity

Generate data under the null hypothesis

- Estimate ϑ_1, ϑ_2 under the restriction of the null hypothesis, that is the estimates fulfill $d(m_1, m_2) = \epsilon$
- Generate bootstrap data (parametric bootstrap)

$$Y_{\ell,i,j}^* = m_{\ell}(x_{\ell,i},\hat{\vartheta}_{\ell}) + \hat{\sigma}_{\ell}\varepsilon_{\ell,i,j}^*$$

where $arepsilon_{\ell,i,j}^{*}$ are i.i.d. $\sim \mathcal{N}(0,1)$

Bootstrap test for similarity

Bootstrap test:

- Calculate $\hat{\vartheta}_1^*, \hat{\vartheta}_2^*$ from the bootstrap data $Y_{\ell,i,j}^*$
- Calculate $\hat{d}^* = d(\hat{m}_1^*, \hat{m}_2^*)$, for $d = d_\infty$ that is $\hat{\mathbf{d}}_\infty^* = \sup_{x \in \mathcal{X}} |m_1(x, \hat{\vartheta}_1^*) m_2(x, \hat{\vartheta}_2^*)|$
- Repeat this procedure B times
- $\bullet~$ If $\hat{d}^{*(1)},\ldots,\hat{d}^{*(B)}$ denote the ordered bootstrap replicates, the hypothesis

$$H_0: d(m_1, m_2) \geq \epsilon$$

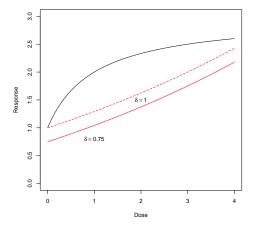
is rejected, whenever

$$\mathbf{\hat{d}} < \mathbf{\hat{d}}^{*(\lfloor \mathbf{B} \alpha \rfloor)}$$

Bootstrap test

- Theoretical properties: one can prove
 - ${\, \bullet \,}$ the bootstrap test has asymptotic level α
 - the bootstrap test is consistent
- More precisely: for increasing sample sizes $n_1, n_2 \rightarrow \infty$
 - $d_{\infty}(m_1, m_2) = \Delta \quad \rightsquigarrow \quad \mathbb{P}(\text{"rejection"}) \quad \rightarrow \alpha$
 - $d_\infty(m_1,m_2) > \Delta \iff \mathbb{P}(ext{``rejection''}) \to 0$
 - $d_\infty(m_1,m_2) < \Delta \ \rightsquigarrow \ \mathbb{P}(ext{``rejection''}) \
 ightarrow 1$

Finite sample properties: EMAX and an exponential model



Finite sample properties: EMAX and an exponential model

Consider the models

$$m_1(x,\beta_1) = \beta_{11} + \frac{\beta_{12}x}{\beta_{13}+x}, \ m_2(x,\beta_2) = \beta_{21} + \beta_{22} \cdot (\exp{(\frac{x}{\beta_{23}})} - 1),$$

•
$$\mathcal{X} = [0, 4]$$

• $\sigma_1^2 = \sigma_2^2 = 0.5$
• $\beta_1 = (\beta_{11}, \beta_{12}, \beta_{13}) = (1, 2, 1), \ \beta_2 = (\beta_{21}, \beta_{22}, \beta_{23}) = (\delta, 2.2, 8)$

We test the hypotheses

$$H_0: d_\infty(m_1,m_2) \geq 1$$
 versus $H_1: d_\infty(m_1,m_2) < 1$

Simulation of the nominal level

			New test		Gsteiger et al.	
(n_1, n_2)	δ	d_{∞}	$\alpha = 0.05$	$\alpha = 0.1$	$\alpha = 0.05$	$\alpha = 0.1$
(10, 10)	0.25	1.5	0.001	0.004	0.000	0.000
(10, 10)	0.5	1.25	0.011	0.030	0.000	0.000
(10, 10)	0.75	1	0.037	0.086	0.000	0.002
(20, 20)	0.25	1.5	0.000	0.000	0.000	0.000
(20, 20)	0.5	1.25	0.004	0.018	0.000	0.000
(20, 20)	0.75	1	0.038	0.100	0.003	0.020

Table: Simulated level of the the new bootstrap test and the test of Gsteiger et al. (2011).

Power

			New test		Gsteiger et al.	
(n_1, n_2)	δ	d_∞	$\alpha = 0.05$	$\alpha = 0.1$	$\alpha = 0.05$	$\alpha = 0.1$
(10, 10)	1	0.75	0.093	0.225	0.004	0.007
(10, 10)	1.5	0.5	0.133	0.231	0.003	0.018
(20, 20)	1	0.75	0.138	0.271	0.022	0.054
(20, 20)	1.5	0.5	0.229	0.398	0.036	0.080
(50, 50)	1	0.75	0.274	0.416	0.183	0.326
(50, 50)	1.5	0.5	0.491	0.648	0.294	0.478

Table: Simulated power of the the new bootstrap test and the test of Gsteiger et al. (2011).

э

Further results

- the bootstrap test has been implemented in the R package TestingSimilarity
- the proposed tests have been adapted to
 - the case of comparing multiple curves
 - models with common parameters
- a robust performance of all tests under the assumption of model misspecification was observed

Further results

- the bootstrap test has been implemented in the R package TestingSimilarity
- the proposed tests have been adapted to
 - the case of comparing multiple curves
 - models with common parameters
- a robust performance of all tests under the assumption of model misspecification was observed

Conclusions and future research

- The test of Gsteiger et al. (2011) has no power in case of small sample sizes or large variances.
- Its power can be substantially improved by the use of **optimal designs** (first part of the talk).
- Substantially more powerful test have been developed (second part of the talk).
 - estimate the distance directly
 - generate quantiles by parametric bootstrap (non standard constrained estimation).
- Future research:
 - improve the power of the new tests by optimal designs.
 - derive similar tests and optimal designs for correlated observations (EMA).

Conclusions and future research

- The test of Gsteiger et al. (2011) has no power in case of small sample sizes or large variances.
- Its power can be substantially improved by the use of **optimal designs** (first part of the talk).
- Substantially more powerful test have been developed (second part of the talk).
 - estimate the distance directly
 - generate quantiles by parametric bootstrap (non standard constrained estimation).

• Future research:

- improve the power of the new tests by optimal designs.
- derive similar tests and optimal designs for correlated observations (EMA).

Conclusions and future research

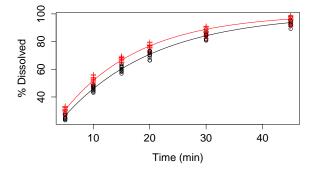


Figure: Comparison of concentration profiles.

Acknowledgments

The research is embedded in the IDeAl EU-FP7 project, Grant-Agreement No. $602\ 552$

References:

- Biesheuvel, E. and Hothorn, L. A. (2002). Many-to-one comparisons in stratified designs, Biometrical Journal, 44, 101–116
- Bjoern Bornkamp, Jose Pinheiro and Frank Bretz (2010) DoseFinding: Planning and Analyzing Dose Finding experiments. R package version 0.1-1. Available at http://cran.r-project.org/web/packages/DoseFinding/index.html
- Dette, H., Möllenhoff, K., Volgushev, S. and Bretz, F. (2015) Equivalence of dose response curves. http://arxiv.org/abs/1505.05266
- Dette, H. und Schorning, K. (2016): Optimal designs for comparing curves. Annals of Statistics 44(3), 1103-1130.
- Gsteiger, S., Bretz, F., and Liu, W. (2011). Simultaneous con dence bands for nonlinear regression models with application to population pharmacokinetic analyses. Journal of Biopharmaceutical Statistics, 21(4):708-725.
- Moellenhoff, K. (2015) TestingSimilarity: Bootstrap Test for Similarity of Dose Response Curves Concerning the Maximum Absolute Deviation. R package version 1.0, available at http://cran.r-project.org/web/packages/TestingSimilarity/index.html

イロト 人間ト イヨト イヨト