Linked assessment criterion for the choice of a randomization procedure

David Schindler, Ralf-Dieter Hilgers

Department of Medical Statistics
RWTH Aachen University
June 14th, 2016

Introduction

- Choice of a randomization procedure does not follow scientific arguments up to now.
- Treatment comparisons should involve consideration of the potential influence of bias on the p-value (ICH E9, 1998).
- Unequal performance of randomization procedures with respect to the following objectives:
- Selection bias
- Chronological bias
- Balancing behavior
\Rightarrow Presentation of a linked assessment criterion for the choice of a randomization procedure

Model

Assuming a (random) bias vector $\mathbf{B}=\left(b_{1}, b_{2}, \ldots, b_{N}\right)^{T}$ the i th patient's response with $i \in\{1,2, \ldots, N\}$ can be expressed as:

$$
\begin{equation*}
y_{i}=\mu_{E} T_{i}+\mu_{C}\left(1-T_{i}\right)+b_{i}+\epsilon_{i} . \tag{1}
\end{equation*}
$$

- The treatment indicator takes the values:

$$
T_{i}=\left\{\begin{array}{ll}
1, & \text { if patient } i \text { is allocated to group } E \\
0, & \text { if patient } i \text { is allocated to group } C
\end{array} .\right.
$$

- Expected response μ_{j} under treatment $j \in\{E, C\}$.
- Errors $\epsilon_{i} \underset{\text { iid }}{\sim} \mathcal{N}(0,1)$.

Test statistic

We test the hypotheses

$$
H_{0}: \mu_{E}=\mu_{C} \text { vs. } H_{1}: \mu_{E} \neq \mu_{C}
$$

with Student's t-test (under misspecification) and test statistic

$$
\begin{gathered}
W:=\sqrt{\frac{N_{E} N_{C}}{N_{E}+N_{C}}} \frac{\bar{y}_{E}-\bar{y}_{C}}{S_{\text {pooled }}} \\
\text { with } \bar{y}_{E}=\frac{1}{N_{E}} \sum_{i=1}^{N} y_{i} T_{i} \text { and } \bar{y}_{C}=\frac{1}{N_{C}} \sum_{i=1}^{N} y_{i}\left(1-T_{i}\right),
\end{gathered}
$$

where N_{E} and N_{C} are the final numbers of patients assigned to the corresponding treatment group.

Distribution of the test statistic

Lemma (Generalization of Langer (2014)):
The test statistic W follows a doubly-noncentral t-distribution with noncentrality parameteres $\delta:=\delta(\mathbf{T}, \mathbf{B})$ and $\lambda:=\lambda(\mathbf{T}, \mathbf{B})$. Under $H_{0}: \mu_{E}=\mu_{C}$ and $\mathbf{B}=\left(b_{1}, b_{2}, \ldots, b_{N}\right)^{T}$ it follows that the noncentrality parameters are given by:

$$
\begin{aligned}
& \delta=\sqrt{\frac{N_{E} N_{C}}{N_{E}+N_{C}}}\left(\bar{B}_{E}-\bar{B}_{C}\right) \text { and } \lambda=\sum_{i=1}^{N}\left(B_{i}^{2}-N_{E} \bar{B}_{E}^{2}-N_{C} \bar{B}_{C}^{2}\right) \\
& \text { with } \bar{B}_{E}=\frac{1}{N_{E}} \sum_{i=1}^{N} b_{i} \mathbb{1}_{\left\{T_{i}=1\right\}} \text { and } \bar{B}_{C}=\frac{1}{N_{C}} \sum_{i=1}^{N} b_{i} \mathbb{1}_{\left\{T_{i}=0\right\}}
\end{aligned}
$$

Rejection probability

Theorem:

Assuming $H_{0}: \mu_{E}=\mu_{C}$, the rejection probability dependent on \mathbf{T} and \mathbf{B} can be calculated as follows:

$$
\begin{aligned}
\alpha(\mathbf{T}) & :=\alpha(\mathbf{T}, \mathbf{B}):=P\left(|W|>t_{N-2,1-\alpha / 2} \mid \mathbf{T}, \mathbf{B}\right) \\
& =F_{N-2, \delta, \lambda}\left(t_{N-2, \alpha / 2}\right)+1-F_{N-2, \delta, \lambda}\left(t_{N-2,1-\alpha / 2}\right),
\end{aligned}
$$

where $F_{N-2, \delta, \lambda}(x)$ is the distribution fuction of the doubly noncentral t-distribution with $N-2$ degrees of freedom and noncentrality parameteres δ and λ.

Corollary:

The noncentrality parameter λ is invariant with respect to a treatment difference, δ not.

Types of bias

For chronological bias according to Tamm and Hilgers (2014) b_{i} is assumed to be increasing/decreasing in N. For a linear time trend we define:

$$
b_{i}=\frac{(i-1) \vartheta}{N} \text { with } \vartheta \in \mathbb{R} \text { and } i \in\{1,2, \ldots, N\} .
$$

In the situation of selection bias b_{i} is dependent on the patients assigned to the corresponding treatment groups (Proschan, 1994):

$$
b_{i}=\left\{\begin{aligned}
\eta, & \text { if } N_{E}(i-1)<N_{C}(i-1) \\
-\eta, & \text { if } N_{E}(i-1)>N_{C}(i-1) \text { with } \eta \in \mathbb{R}_{+} . \\
0, & \text { if } N_{E}(i-1)=N_{C}(i-1)
\end{aligned}\right.
$$

Permuted Block Randomization

- At the end of each block there is no difference in patient numbers
- All sequences are equiprobable

PBR(4): Permuted Block Randomization with block length 4

Properties of $\operatorname{PBR}(4)$ with $N=4$

Investigated settings for selection bias:

- $\alpha=0.05$
- $\eta=1.42$ (one quarter of the effect size)
- $\alpha_{S B}\left(\mathbf{T}_{j}\right):=$ Type-l-error of \mathbf{T}_{j} in case of selection bias

j	\mathbf{T}_{j}	$P\left(\mathbf{T}_{j}\right)$	$\alpha_{S B}\left(\mathbf{T}_{j}\right)$	$\alpha_{T T}\left(T_{j}\right)$	$1-\beta_{T T}\left(T_{j}\right)$	$1-\beta_{0}\left(T_{j}\right)$
1	CCEE	$1 / 6$	0.047			
2	CECE	$1 / 6$	0.138			
3	ECCE	$1 / 6$	0.060			
4	CEEC	$1 / 6$	0.060			
5	ECEC	$1 / 6$	0.138			
6	EECC	$1 / 6$	0.047			
average value:					0.081	

Properties of $\operatorname{PBR}(4)$ with $N=4$

Investigated settings for chronological bias:

- $\alpha=0.05,(1-\beta)=0.8, \mu_{E}-\mu_{C}=5.65$
- $\vartheta=1$
- $\alpha_{T T}\left(\mathbf{T}_{j}\right)$:= Type-l-error of \mathbf{T}_{j} in case of a linear time trend
- $1-\beta_{T T}\left(\mathbf{T}_{j}\right):=$ Power of \mathbf{T}_{j} in case of a linear time trend

j	T_{j}	$P\left(\mathbf{T}_{j}\right)$	$\alpha_{S B}\left(\mathbf{T}_{j}\right)$	$\alpha_{T T}\left(\mathbf{T}_{j}\right)$	$1-\beta_{T T}\left(\mathbf{T}_{j}\right)$	$1-\beta_{0}\left(T_{j}\right)$	overall
1	CCEE	1/6	0.047	0.060	0.842		
2	CECE	1/6	0.138	0.047	0.792		
3	ECCE	1/6	0.060	0.043	0.755		
4	CEEC	1/6	0.060	0.043	0.755		
5	ECEC	1/6	0.138	0.047	0.734		
6	EECC	1/6	0.047	0.060	0.730		
average value			0.081	0.050	0.768		
			FP7 HEATTH 2013-602552		MSA		

Properties of $\operatorname{PBR}(4)$ with $N=4$

Investigatd settings for the balancing behavior:

- $(1-\beta)=0.8$
- $\mu_{E}-\mu_{C}=5.65$

j	T_{j}	$P\left(\mathbf{T}_{j}\right)$	$\alpha_{S B}\left(\mathbf{T}_{j}\right)$	$\alpha_{T T}\left(\mathbf{T}_{j}\right)$	$1-\beta_{T T}\left(\mathbf{T}_{j}\right)$	$1-\beta_{0}\left(\mathbf{T}_{j}\right)$	overall
1	CCEE	1/6	0.047	0.060	0.842	0.800	
2	CECE	1/6	0.138	0.047	0.792	0.800	
3	ECCE	1/6	0.060	0.043	0.755	0.800	
4	CEEC	1/6	0.060	0.043	0.755	0.800	
5	ECEC	1/6	0.138	0.047	0.734	0.800	
6	EECC	1/6	0.047	0.060	0.730	0.800	
average value:			0.081	0.050	0.768	0.800	
	:		MSA)				

Properties of $\operatorname{PBR}(4)$ with $N=4$

- No linked assessment score available \Rightarrow How is the performance of $\operatorname{PBR}(4)$ in comparison to other randomization procedurs?

j	T ${ }_{\text {j }}$	$P\left(\mathbf{T}_{j}\right)$	$\alpha_{S B}\left(\mathbf{T}_{j}\right)$	$\alpha_{T T}\left(\mathbf{T}_{j}\right)$	$1-\beta_{T T}\left(\mathbf{T}_{j}\right)$	$1-\beta_{0}\left(\mathbf{T}_{j}\right)$	overall
1	CCEE	1/6	0.047	0.060	0.842	0.800	?
2	CECE	1/6	0.138	0.047	0.792	0.800	?
3	ECCE	1/6	0.060	0.043	0.755	0.800	?
4	CEEC	1/6	0.060	0.043	0.755	0.800	?
5	ECEC	1/6	0.138	0.047	0.734	0.800	?
6	EECC	1/6	0.047	0.060	0.730	0.800	?
average value:			0.081	0.050	0.768	0.800	?
\%			MSA				

Right-sided Derringer-Suich desirability function

Definition (Derringer and Suich, 1980):

$$
d_{i}(\mathbf{T})=d\left(c_{i}(\mathbf{T})\right):= \begin{cases}1 & c_{i}(\mathbf{T}) \leq T V_{i} \\ \frac{U S L_{i}-c_{i}\left(\mathbf{T}_{i}\right)}{U S L_{i}-T V_{i}} & T V_{i}<c_{i}(\mathbf{T}) \leq U S L_{i} \\ 0 & c_{i}(\mathbf{T}) \geq U S L_{i}\end{cases}
$$

TV: Target Value USL: Upper Specification Limit

i	Criterion $_{i}\left(c_{i}\right)$	TV_{i}	USL $_{i}$
1	$\alpha_{S B}(\mathbf{T})$	0.05	0.10
2	$\alpha_{T T}(\mathbf{T})$	0.05	0.10
3	$\beta_{T T}(\mathbf{T})$	0.20	0.40
4	$\beta_{0}(\mathbf{T})$	0.20	0.25

Properties of desirability scores

- Desirability scores take values in the interval $[0,1]$.
- Desirability scores can be summarized with the geometric mean:

$$
\bar{d}(\mathbf{T}):=\prod_{i=1}^{4} d_{i}(\mathbf{T})^{\omega_{i}} \text { with } \sum_{i=1}^{4} \omega_{i}=1
$$

- The geometric means serves as linked assessment criterion.

Properties of desirability scores

- Desirability scores take values in the interval $[0,1]$.
- Desirability scores can be summarized with the geometric mean:

$$
\bar{d}(\mathbf{T}):=\prod_{i=1}^{4} d_{i}(\mathbf{T})^{\omega_{i}} \text { with } \sum_{i=1}^{4} \omega_{i}=1
$$

- The geometric means serves as linked assessment criterion.
- Weights should be chosen dependent on the planned trial.
- Heuristical approach:

Distribute the weight uniformly on selection bias, chronological bias, and balancing behavior.

$$
\Rightarrow \omega_{1}=1 / 3, \omega_{2}=\omega_{3}=1 / 6, \text { and } \omega_{4}=1 / 3
$$

Assessment of $\operatorname{PBR}(4)$ with $N=4$

j	T_{j}	$P\left(\mathbf{T}_{j}\right)$	$\alpha_{S B}\left(\mathbf{T}_{j}\right)$	$d_{1}\left(\mathbf{T}_{j}\right)$	$a_{T T}\left(T_{j}\right)$	$\mathrm{d}_{2}\left(\mathrm{~T}_{j}\right)$	$1-\beta_{T T}\left(T_{j}\right)$	$d_{3}\left(T_{j}\right)$	$1-\beta_{0}\left(T_{j}\right)$	$d_{4}\left(T_{j}\right)$	$d\left(T_{j}\right)$
1	EECC	$1 / 6$	0.047	1.000							
2	ECEC	$1 / 6$	0.138	0.000							
3	CEEC	$1 / 6$	0.060	0.809							
4	ECCE	$1 / 6$	0.060	0.809							
5	CECE	$1 / 6$	0.138	0.000							
6	CCEE	$1 / 6$	0.047	1.000							
	averag	value:	0.081	0.603							

$$
d_{1}\left(\mathbf{T}_{1}\right)=d\left(\alpha_{S B}\left(\mathbf{T}_{1}\right)\right)=1, \text { because } 0.047<0.05
$$

Assessment of $\operatorname{PBR}(4)$ with $N=4$

j	T_{j}	$P\left(\mathbf{T}_{j}\right)$	$\alpha_{S B}\left(\mathbf{T}_{j}\right)$	$d_{1}\left(\mathbf{T}_{j}\right)$	$\alpha_{T T}\left(\mathbf{T}_{j}\right)$	$d_{2}\left(\mathbf{T}_{j}\right)$	$1-\beta_{T T}\left(\mathbf{T}_{j}\right)$	$d_{3}\left(\mathbf{T}_{j}\right)$	$1-\beta_{0}\left(\mathbf{T}_{j}\right)$	$d_{4}\left(\mathbf{T}_{j}\right)$	$\bar{d}\left(\mathbf{T}_{j}\right)$
1	EECC	1/6	0.047	1.000	0.060	0.804	0.842	1.000	0.8000	1.000	0.964
2	ECEC	1/6	0.138	0.000	0.047	1.000	0.792	0.961	0.8000	1.000	0.000
3	CEEC	1/6	0.060	0.809	0.043	1.000	0.755	0.776	0.8000	1.000	0.893
4	ECCE	1/6	0.060	0.809	0.043	1.000	0.755	0.776	0.8000	1.000	0.893
5	CECE	1/6	0.138	0.000	0.047	1.000	0.734	0.668	0.8000	1.000	0.000
6	CCEE	1/6	0.047	1.000	0.060	0.897	0.730	0.649	0.8000	1.000	0.850
average value:			0.081	0.603	0.050	0.935	0.768	0.805	0.8000	1.000	0.608

$$
\begin{aligned}
\bar{d}\left(\mathbf{T}_{1}\right) & =\sqrt[3]{d_{1}\left(\mathbf{T}_{1}\right)} \cdot \sqrt[6]{d_{2}\left(\mathbf{T}_{1}\right)} \cdot \sqrt[6]{d_{3}\left(\mathbf{T}_{1}\right)} \cdot \sqrt[3]{d_{4}\left(\mathbf{T}_{1}\right)} \\
& =\sqrt[3]{1} \cdot \sqrt[6]{0.804} \cdot \sqrt[6]{1} \cdot \sqrt[3]{1} \\
& =0.964
\end{aligned}
$$

Assessment of $\operatorname{PBR}(4)$ with $N=4$

j	\mathbf{T}_{j}	$P\left(\mathbf{T}_{j}\right)$	$\alpha_{S B}\left(\mathbf{T}_{j}\right)$	$d_{1}\left(\mathbf{T}_{j}\right)$	$\alpha_{T T}\left(\mathbf{T}_{j}\right)$	$d_{2}\left(\mathbf{T}_{j}\right)$	$1-\beta_{T T}\left(\mathbf{T}_{j}\right)$	$d_{3}\left(\mathbf{T}_{j}\right)$	$1-\beta_{0}\left(\mathbf{T}_{j}\right)$	$d_{4}\left(\mathbf{T}_{j}\right)$	$\bar{d}\left(\mathbf{T}_{j}\right)$
1	EECC	$1 / 6$	0.047	1.000	0.060	0.804	0.842	1.000	0.8000	1.000	0.964
2	ECEC	$1 / 6$	0.138	0.000	0.047	1.000	0.792	0.961	0.8000	1.000	0.000
3	CEEC	$1 / 6$	0.060	0.809	0.043	1.000	0.755	0.776	0.8000	1.000	0.893
4	ECCE	$1 / 6$	0.060	0.809	0.043	1.000	0.755	0.776	0.8000	1.000	0.893
5	CECE	$1 / 6$	0.138	0.000	0.047	1.000	0.734	0.668	0.8000	1.000	0.000
6	CCEE	$1 / 6$	0.047	1.000	0.060	0.804	0.730	0.649	0.8000	1.000	0.897
average value:							0.081	0.603	0.050	0.935	0.768
0						0.805	0.8000	1.000	0.608		

$$
\begin{aligned}
\varnothing \bar{d}(\mathbf{T}) & =1 / 6(0.964+0+0.893+0.893+0+0.897) \\
& =0.608
\end{aligned}
$$

Assessment of $\operatorname{PBR}(4)$ with $N=4$

j	\mathbf{T}_{j}	$P\left(\mathbf{T}_{j}\right)$	$\alpha_{S B}\left(\mathbf{T}_{j}\right)$	$d_{1}\left(\mathbf{T}_{j}\right)$	$\alpha_{T T}\left(\mathbf{T}_{j}\right)$	$d_{2}\left(\mathbf{T}_{j}\right)$	$1-\beta_{T T}\left(\mathbf{T}_{j}\right)$	$d_{3}\left(\mathbf{T}_{j}\right)$	$1-\beta_{0}\left(\mathbf{T}_{j}\right)$	$d_{4}\left(\mathbf{T}_{j}\right)$	$\bar{d}\left(\mathbf{T}_{j}\right)$
1	EECC	$1 / 6$	0.047	1.000	0.060	0.804	0.842	1.000	0.8000	1.000	0.964
2	ECEC	$1 / 6$	0.138	0.000	0.047	1.000	0.792	0.961	0.8000	1.000	0.000
3	CEEC	$1 / 6$	0.060	0.809	0.043	1.000	0.755	0.776	0.8000	1.000	0.893
4	ECCE	$1 / 6$	0.060	0.809	0.043	1.000	0.755	0.776	0.8000	1.000	0.893
5	CECE	$1 / 6$	0.138	0.000	0.047	1.000	0.734	0.668	0.8000	1.000	0.000
6	CCEE	$1 / 6$	0.047	1.000	0.060	0.804	0.730	0.649	0.8000	1.000	0.897
average value:								0.081	0.603	0.050	0.935
							0.768	0.805	0.8000	1.000	0.608

- Average desirability scores can be visualized in a radar plot, which is available in the randomizeR package (Schindler et al., 2015).

Radar plot

- $\operatorname{PBR}(4)$ is \ldots
- good in handling the assumed linear time trend
- susceptible to selection bias
- perfect with respect to its balancing behavior

Complete Randomization

- Fair coin toss for each patient allocation

CR: Complete Randomization

Big Stick Design (Soares and Wu, 1983)

- Fair toin toss with an imbalance boundary

BSD(2): Big Stick Design with tolerated imbalance boundary 2

Comparison for $N=8$

- $\operatorname{PBR}(2)$ seems to be very susceptible to selection bias
- CR has worse balancing behavior
- $\operatorname{BSD}(3)$ and PBR(8) manage the investigated criteria the best

Comparison for $N=200$

- PBR(2) far too susceptible to selection bias
- CR and PBR(200) have nearly the same behavior
- BSD(3) manages the investigated criteria the best

Flexibility of the approach

- The linked assessment criterion summarizes all imaginable criteria to one unified score and takes their importance into account.
- Other suggested criteria in the literature are:
- Correct Guesses (Blackwell and Hodges Jr., 1957)
- Loss in treatment estimation (Atkinson, 2001)
- Other randomization procedures can be easily assessed such as:
- Efron's Biased Coin Design
- Truncated Binomial Design
- Randomized Permuted Block Randomization
- Maximal Procedure

Conclusion

- Randomization procedures differ in terms of their susceptibility to selection bias, chronological bias, and balancing behavior.
- The linked assessment criterion makes a fair comparison of different randomization procedures possible.
- The radar plot compares the behavior of randomization procedures at a glance.
- We developed randomizeR (Schindler et al., 2015) for making fair comparisons of randomization procedures concerning different types of bias and their balancing behavior.

The IDeAl project has received funding from the European Union's 7th Framework Programme for research, technological development and demonstration under Grant Agreement no 602552.

References

Atkinson, A. C. (2001). The comparison of designs for sequential clinical trials with covariate information. Journal of the Royal Statistical Socitey 165, 349-373.
Blackwell, D. and J. L. Hodges Jr. (1957). Design for the control of selection bias. Annals of Mathematical Statistics 25, 449-460.
Derringer, G. and R. Suich (1980). Simultaneous optimization of several response variables. Journal of Quality Technology 12, 214-219.
ICH E9 (1998). Statistical principles for clinical trials. Current Step 4 version dated 5 Februrary 1998. Available from: http://www.ich.org.
Kennes, L. N., E. Cramer, R.-D. Hilgers, and N. Heussen (2011). The impact of selection bias on test decision in randomized clinical trials. Statistics in Medicine 30, 2573-2581.
Langer, S. (2014). The modified distribution of the t-test statistic under the influence of selection bias based on random allocation rule. master thesis, RWTH Aachen University.

References II

Proschan, M. (1994). Influence of selection bias on type 1 error rate under random permuted block designs. Statistica Sinica 4, 219-231.
Schindler, D., D. Uschner, R.-D. Hilgers, and N. Heussen (2015). randomizeR: Randomization for clinical trials. R package version 1.2.
Soares, J. F. and C. Wu (1983). Some restricted randomization rules in sequential designs. Communications in Statiscs - Theory and Methods 12, 2017-2034.

Tamm, M. and R.-D. Hilgers (2014). Chronological bias in randomized clinical trials under different types of unobserved time trends. Methods of Information in Medicine 53, 501-510.

Randomized Permuted Block Randomization

Figure: $N=20$

Figure: $N=200$

Randomized Truncated Binomial Design

Figure: $N=20$

Figure: $N=200$

Comparison

Figure: $N=20$
D. Schindler

FP7 HEALTH 2013-602552

Figure: $N=200$

Loss in treatment estimation (Atkinson, 2001)

Under the assumption of the following model

$$
\mathbf{Y}=\left(\begin{array}{cc}
1 & T_{1} \\
1 & T_{2} \\
\vdots & \vdots \\
1 & T_{N}
\end{array}\right)\binom{\theta_{0}}{\theta_{1}}+\left(\begin{array}{c}
\epsilon_{1} \\
\epsilon_{2} \\
\vdots \\
\epsilon_{N}
\end{array}\right)=\mathbf{A} \boldsymbol{\theta}+\boldsymbol{\epsilon}
$$

we can compute $\operatorname{Var}\left(\hat{\theta}_{1}\right)$ as follows:

$$
\operatorname{Var}\left(\hat{\theta}_{1}\right)=\frac{\sigma^{2}}{N-\frac{D(N, \mathbf{T})^{2}}{N}}=\frac{\sigma^{2}}{N-L(\mathbf{T})}
$$

where $D(N, \mathbf{T})$ defines the imbalance in group sizes at the end of the clinical study and $L(\mathbf{T})$ the loss.

Selection bias

Assuming a balanced trial it is opportune for the experimenter to guess the i-th allocation according to the convergence strategy (Blackwell and Hodges Jr., 1957) :

$$
g_{C S}(i, \mathbf{T})=\left\{\begin{array}{ll}
E & N_{E}(i-1, \mathbf{T})<N_{C}(i-1, \mathbf{T}) \\
\text { random guess } & N_{E}(i-1, \mathbf{T})=N_{C}(i-1, \mathbf{T}) . \\
C & N_{E}(i-1, \mathbf{T})>N_{C}(i-1, \mathbf{T})
\end{array} .\right.
$$

Expected proportion of Correct Guesses (CG) of \mathbf{T} is defined as:

$$
C G(\mathbf{T})=\frac{\mathbb{E}\left(\sum_{i=1}^{N} \mathbb{1}_{\left\{T_{i}=g_{c s}(i, \mathbf{T})\right\}}\right)}{N}
$$

Right-sided Derringer-Suich desirability function

Definition (Derringer and Suich (1980)):

$$
d_{i}(\mathbf{T})=d\left(c_{i}(\mathbf{T})\right):= \begin{cases}1 & c_{i}(\mathbf{T}) \leq T V_{i} \\ \frac{U S L_{i}-c_{i}\left(\mathbf{T}_{i}\right)}{U S L_{i}-T V_{i}} & T V_{i}<c_{i}(\mathbf{T}) \leq U S L_{i} \\ 0 & c_{i}(\mathbf{T}) \geq U S L_{i}\end{cases}
$$

TV: Target Value USL: Upper Specification Limit

i	Criterion $_{i}\left(c_{i}\right)$	TV_{i}	USL $_{i}$
1	$L(\mathbf{T})$	0	1
2	$C G(\mathbf{T})$	0.5	0.75

Randomized Permuted Block Randomization

Figure: $N=20$

Figure: $N=200$

Randomized Truncated Binomial Design

Figure: $N=20$
Figure: $N=200$

Comparison

Figure: $N=20$

FP7 HEALTH 2013-602552

Figure: $N=200$

Distribution of $\alpha_{S B}$ with $N=8$

- Settings:
- $\eta=\Delta_{0} / 4=0.6$
- $\alpha_{0}=0.05$
- Results:
- PBR(2) most susceptible to selection bias
- CR and BSD (3) have the best performance

Distribution of $\alpha_{C B}$ for $N=8$

Distribution of $\left(1-\beta_{S B}\right)$ with $N=8$

- Settings:
- $\vartheta=1$
- $\left(1-\beta_{0}\right)=0.8$
- Results:
- PBR(2) has lowest variance
- CR has greatest variability and outliers are possible

Distribution of $\left(1-\beta_{0}\right)$ with $N=8$

