Choosing a suitable randomization procedure with randomizeR

Diane Uschner David Schindler Ralf-Dieter Hilgers
RWTH Aachen University

November 2, 2015

Acknowledgment

This research is part of the IDeAl project which has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under Grant Agreement no 602552.
Please visit

> http://www.ideal.rwth-aachen.de/
to get the latest news.

- Randomized Controlled Clinical Trial with $K \geq 2$ treatment arms
- Restricted Randomization is used for the allocation of treatments to patients.
- Aim: Choose suitable randomization procedure according to problems that might occur during the trial
- Propose a tool for the design of a clinical trial to
- Assess and compare randomization procedures sequence wise wrt issues (e.g. selection bias)
- Calculate the exact distribution of the issue (e.g. distribution of the type-l-error for the sequences).

Aim: Exact distribution of the issue

Example: Exact distribution of the type-l-error in case the responses are influenced by selection bias (Convergence Strategy).

```
Sequence Probability P(rej)(CS)
    BBAA 0.1666667 0.04229902
    BABA 0.1666667 0.18880215
    ABBA 0.1666667 0.04972876
    BAAB 0.1666667 0.04972876
    ABAB 0.1666667 0.18880215
    AABB 0.1666667 0.04229902
```

1

Suitable Randomization Procedure

Process

1. Identify constraints that impact the validity of the trial.
2. Define issues that measure the constraint.
3. Assess randomization procedures according to the issues.
4. Select appropriate randomization procedure on the basis of the assessment.

Definition of issue

An issue is a criterion for the assessment of randomization procedures that can be measured for each randomization sequence.

Structure of the package

Randomization procedure

Randomization procedure

A randomization procedure \mathcal{M} is a probability distribution on $\Gamma=\{0,1\}^{N} . t \in \Gamma$ is called randomization sequence. \mathcal{M} produces the sequences

$$
\Gamma_{\mathcal{M}}=\left\{t \in \Gamma \mid \mathbb{P}_{\mathcal{M}}(t) \neq 0\right\}
$$

```
install.packages('randomizeR')
library(randomizeR)
N<-8
```


Random Allocation Rule

Equally probable final balance sequences:

$$
\mathbb{P}_{R A R}(t)= \begin{cases}\binom{N}{N / 2}^{-1} & \sum_{i=1}^{N}\left(2 \cdot t_{i}-1\right)=0 \\ 0 & \text { else }\end{cases}
$$

Permuted Block Randomization

Equally probable balance sequences that attain balance after each block:

$$
\begin{aligned}
& \mathbb{P}_{\text {PBR }}(t)= \begin{cases}\binom{k}{k / 2}^{-N / k} & \sum_{i=1}^{j \cdot k}\left(2 \cdot t_{i}-1\right)=0 \\
0 & \text { else. }\end{cases} \\
& \text { for } j=1, \ldots, N / k . \\
& \mathrm{k}<-4 \text { \#block length } \\
& \mathrm{bc}<-\mathrm{rep}(\mathrm{k}, \mathrm{~N} / \mathrm{k}) \# b \text { lock constellation } \\
& \operatorname{pbrPar}(\mathrm{bc})
\end{aligned}
$$

Maximal Procedure (Berger (2005))

Equally probable final balance sequences that do not exceed an imbalance boundary b.

$$
\mathbb{P}_{M P}(t)= \begin{cases}\frac{1}{\left|\Gamma_{M P}\right|} & D_{N}=0, \forall i:\left|D_{i}\right| \leq b \\ 0 & \text { else } .\end{cases}
$$

$$
\mathrm{b}<-2
$$

Big Stick Design

Toss a fair coin in until you hit the imbalance boundary. Then make a deterministic allocation.

$$
\mathbb{P}_{B S D}(t)= \begin{cases}0.5^{N-d a} & \sum_{i=1}^{N}\left|2 \cdot t_{i}-1\right| \leq b \\ 0 & \text { else. }\end{cases}
$$

with imbalance boundary b and number of deterministic allocations $d a:=\left|\left\{j: \sum_{i=1}^{j} t_{i}=b\right\}\right|$.

$$
b<-2
$$

Patient i

createParam()	Creates a <.>Par object according to user input.
createSeq()	Generates a random sequence according to user in- put.
genSeq()	Generate a random sequence from a <.>Par object.
getAllSeq(myPar)	Compute $\Gamma_{\mathcal{M}}$ for $N<20$. getProb(seqs) Compute the theoretical probabilities for an object seqs of type randSeq.
saveRand(seqs)	Save the randomization protocol inluding a the ran- domization sequence(s) to.$c s v$.

Performance of genSeq

$$
\text { Performance of generating } 10^{\times} \text {RAR sequences, } x \in\{3,4,5,6\} \text {. }
$$

system.time (genSeq(rarPar(100),10~3)) system.time (genSeq(rarPar(100),10^5))

```
user
system elapsed
0.06
\(0.00 \quad 0.06\)
```

user system elapsed
$6.16 \quad 0.05 \quad 6.23$
system.time (genSeq (rarPar(100),10^4)) system.time (genSeq(rarPar(100),10^6))

```
user system elapsed
0.70
\(0.00 \quad 0.71\)
user system elapsed
\(62.95 \quad 0.44 \quad 63.48\)
```


Assessment of Randomization Procedures

Definition

An issue is a criterion for the assessment of randomization procedures that can be measured for each randomization sequence.
selBias Represent exact rejection probability (size/ power) in case the responses are influenced by selection bias.
corGuess Represent the proportion of correct guesses.
chronBias Represent exact rejection probability (size/ power) in case the responses are influenced by chronological bias.
setPower Represent the power for a given detectable effect and size.
imbal

Represent the imbalance in allocation numbers.

> Table: Issues implemented in randomizeR

Model for the responses (unbiased

Response

Let E and C be treatments that influence a continuous outcome Y. For $i=1, \ldots, N$, we write

$$
\begin{equation*}
Y_{i} \sim \mathcal{N}\left(\mu+d \cdot T_{i}, \sigma^{2}\right) \tag{1}
\end{equation*}
$$

where $d \in \mathbb{R}$ denotes the treatment effect, $\mu>0$ the overall mean and $\sigma^{2}>0$ the equal but unknown variance. Y_{i} is called response of patient i. Higher values of Y are regarded as better.

Represent normal endpoints in randomizeR

```
normEndp(mu=c(0,0), sigma=c(1,1))
```

Test Model:

$$
Y_{i} \sim \mathcal{N}\left(\mu+d \cdot T_{i}, \sigma^{2}\right)
$$

Test the hypothesis under model miss-specification!

True Model:

$$
Y_{i} \sim \mathcal{N}\left(\mu+d \cdot T_{i}+g(\theta, i), \sigma^{2}\right)
$$

Null hypothesis

We test the null hypothesis that the expected effect of the experimental treatment does not differ from the expected effect of the control treatment

$$
H_{0}: d=0
$$

against the two-sided alternative that the expected treatment effects differ

$$
H_{1}: d \neq 0
$$

Selection bias under convergence strategy

Third order selection bias

- Trial is randomized.
- Allocation list is concealed.
- But: the investigator can guess the next treatment assignment due to
- unmasking of past assignments (e.g. due to side effects).
- restrictions of the randomization procedure.
- Investigator can deny enrollment due to soft inclusion criteria.
Berger (2005)

Selection bias under convergence strategy

Third order selection bias

- Trial is randomized.
- Allocation list is concealed.
- But: the investigator can guess the next treatment assignment due to
- unmasking of past assignments (e.g. due to side effects).
- restrictions of the randomization procedure.

- Investigator can deny enrollment due to soft inclusion criteria.

> Berger (2005)

Biasing Policy

Selection bias

Choose patient $i+1$ with expected response

$$
E\left(Y_{i+1}\right)= \begin{cases}\mu-\eta & N_{E}(i)>N_{C}(i) \\ \mu & N_{E}(i)=N_{C}(i) \\ \mu+\eta & N_{E}(i)<N_{C}(i)\end{cases}
$$

with selection effect $\eta>0$.

Patient i

Exact rejection probability in case of selection bias

Given the randomization sequence $t \in \Gamma$ and using Student's t-test in order to test the hypothesis $H_{0}: d=0$ of no treatment effect, the test statistic

$$
S=\frac{\sqrt{\frac{N_{E} N_{C}}{N_{E}+N_{C}}}\left(\tilde{y}_{E}-\tilde{y}_{C}\right)}{\frac{1}{N_{E}+N_{C}-2}\left(\sum_{i=1}^{N} t_{i}\left(y_{i}-\tilde{y}_{E}\right)^{2}+\sum_{i=1}^{N}\left(1-t_{i}\right)\left(y_{i}-\tilde{y}_{C}\right)^{2}\right)}
$$

with $\tilde{y}_{E}=\frac{1}{N_{E}} \sum_{i=1}^{N} y_{i} t_{i}, \tilde{y}_{C}=\frac{1}{N_{C}} \sum_{i=1}^{N} y_{i}\left(1-t_{i}\right)$ and $N=N_{E}+N_{C}$ is doubly noncentrally t-distributed with parameters δ and λ.

Exact rejection probability in case of selection bias(2)

The noncentrality parameters can be determined as follows

$$
\begin{aligned}
\delta= & \eta \sqrt{\frac{1}{\sigma^{2} N}} \sum_{i=1}^{N} 2 \cdot\left(t_{i}-\frac{1}{2}\right) \cdot \operatorname{sign}\left(D_{i-1}\right) \\
\lambda= & \frac{\eta^{2}}{\sigma^{2}}\left(\sum_{i=1}^{N} \operatorname{sign}\left(D_{i-1}\right)^{2}-\frac{2}{N}\left(\sum_{i=1}^{N} t_{i} \cdot \operatorname{sign}\left(D_{i-1}\right)\right)^{2}\right. \\
& \left.\quad-\frac{2}{N}\left(\sum_{i=1}^{N}\left(1-t_{i}\right) \cdot \operatorname{sign}\left(D_{i-1}\right)\right)^{2}\right)
\end{aligned}
$$

Langer (2014)

Figure: Doubly noncentral t-distribution, $N=12$

Assess randomization procedure with randomizeR

```
pbr <- getAllSeq(pbrPar(bc))
sb <- selBias("CS",eta = 0.6, method = "exact")
endp <- normEndp(mu=c(0,0), sigma = c(1,1))
assess(pbr, sb, endp = endp)
```


Comparison of randomization procedures

Randomization Procedures

- randomizeR makes it easy to generate randomization sequences for a large number of randomization procedures.
- Easy to assess and compare randomization procedures for a large number of issues.
- Assessment should be done before conducting a clinical trial.

Want some more?

Try it yourself! Just type

```
install.packages("randomizeR")
library("randomizeR")
vignette("comparison-example")
```

in your R command line.

Atkinson, A. C. (2001). The comparison of designs for sequential clinical trials with covariate information. Journal of the Royal Statistical Socitey 165, 349-373.
Berger, V. W. (2005). Selection Bias and Covariate Imbalances in Randomized Clinical Trials. Wiley.
Blackwell, D. and J. L. Hodges Jr. (1957). Design for the control of selection bias. Annals of Mathematical Statistics 25, 449-460.
ICH E9. Statistical principles for clinical trials, 1998. Current version dated 5 Februrary 1998. Last access in September 2014. Available from: http://www.ich.org.
S. Langer. The modified distribution of the t-test statistic under the influence of selection bias based on random allocation rule. Master's thesis, RWTH Aachen, 2014.
Lehmann (1975) Nonparametrics: Statistical Methods Based on Ranks

References II

Lachin, J. M. (1988). Statistical properties of randomization in clinical trials. Controlled Clinical Trials 9, 289-311.
Proschan, M. (1994). Influence of selection bias on type 1 error rate under random permuted block designs Statistica Sinica 4, 219-231.
Rosenberger, W.F., and Lachin, J.M. (2016). Randomization in clinical trials - Theory and practice. Wiley.
Tamm, M., and Hilgers, R.-D. (2014). Chronolgical bias in randomized clinical trials under different types of unobserved time trends Meth. Inf. Med. 6, 501-510.
Schindler, D., and Uschner, D. (2015). randomizeR: Randomization for Clinical Trials R package version 1.0.

