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Summary

N-of-1 trials are trials in which patients are treated with two or more treatments on multiple occasions.
They can have many different purposes and can be analysed in different frameworks. In this note five
different criterion for planning sample sizes for n-of-1 trials are identified and formulae and advice to
address the associated tasks are provided. Code to accomplish the tasks has been written in GenStat®,
SAS® and R® and the application of the approaches is illustrated.
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Introduction

N-of-1 trials[1-4] are trials in which patients are repeatedly given two or more treatments on separate
occasions with the object of using these repeated episodes as a means of drawing controlled inferences
about the effects of treatment. They may serve a number of different purposes. For example, repeatedly
studying patients may be a way of gaining extra information that reduces the number of patients that
need to be recruited. Alternatively, interest may focus on the specific effect of treatment for a given
patient and this then becomes one way of delivering such information. A further use is that repeat
administration of treatments in a controlled manner is a superior and principled way of identifying
various components of variation. In particular, it permits a separation of random patient-by-treatment
interaction from pure within-patient error[5-7]. This brings two dividends. First, it permits one to
establish the degree of personal response. Second, once the components of variation have been
identified, it becomes possible to produce superior ‘shrunk’ estimates of the effects for individual
patients, using both their own response and the responses of others.

N-of-1 trials can be regarded as a subset of cross-over trials, a form of trial that has received
considerable attention from statisticians. For example, there are at least five monographs devoted to
the subject [8-12]. N-of-1 trials have a longer history in the field of psychology than in medicine per se
and there are also a number of monographs devoted to their use in that field[13-16]. In that tradition,
however, the emphasis has been on individual independent inferences from subject to subject, whereas
what will be considered here is the situation where a number of subjects are studied repeatedly with a
view to using the combined information[17-20].

In this paper, formulae for calculating sample sizes and related quantities for sets of n-of-1 trials for
various purpose are presented and illustrated. Reference is made to programs in GenStat®, SAS® and R®
that perform the necessary calculations. These are available on the website of the FP7-funded IDEAL
project.

Assumptions and a simple model

It will be assumed that n patients will be repeatedly randomised in K >2 cycles of pairs of occasions to
two treatments A and B. This particular design is relatively common (n-of-1 trials themselves are rare)
and is useful if one wishes not only to use each patient as his or her control but also achieve tight
control for any local trend effects[19]. It is assumed that continuous measures are being taken, that the
disease being studied is relatively stable and that carry-over can be eliminated either by using a washout
or by limiting measurement to the latter part of any treatment occasion. It is also assumed that the data
for each cycle for each patient can be reduced to a difference, treatment B minus treatment A (say) for
each patient and that this is an efficient summary of the information for the trial. This is the case for
balanced data (no missing observations per patient) that can be represented by a standard mixed model
such as proposed by Araujo, Julious and Senn[20]. Where that is so, it is not necessary to build a mixed
model for the original observations but instead a simpler model for the differences may be used as
follows:
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Here 8:(1.) are random within-cycle within-patient disturbance terms corresponding to random

differences between occasions within the cycle. These terms are assumed to be identically

independently distributed across cycles and patients. (The variance of 20% is assigned to them to make
the model compatible to one in which the disturbance terms for the original measurements from

occasion to occasion are assumed independent with variance o’ ). The term 7; is the treatment effect
for patient i and this is assumed to have a common average across all patients of T and a variance of
1,//2 : the greater this variance, the greater the variation in the effect of treatment from patient to
patient.

The model is completed by assuming that all error terms are independent of each other and Normally
distributed.

Variances and sample size calculation

We shall consider various formulae suggested by the simple model given by (1). In order to illustrate
their use, it will be instructive to have some specific parameter values in view. We shall assume that the

random treatment-by-patient interaction has a variance of (//2 =1, that the within-patient variance is

0% =4 , that the clinically relevant difference is A =1 and that various numbers of cycles ranging from
k =2 to k =15 might be considered for design purposes. (Two is the minimum number of cycles that
must be present to estimate all the components of variation. Once a set of n of 1 trials have been run
they can be used to inform treatment decisions for patients with only one, or for that matter no cycles.)
It is supposed that a type | error rate of & = 0.05 two-sided is targetted and that a power of 80% is
desirable so that the type Il error rate is f =0.2 . The tasks to be addressed are then:

l. To find the values of N the number of patients which for given values of K will satisfy these
design parameters for both a
1. fixed effects and
2. random effects analysis
Il. To consider variances of estimates of the predicted value for a future patient studied in K cycles
for both
1. anaive estimate (using that patient’s values only)
2. ashrunk estimate using a weighted combination of values from the given patient and
previously studied patients
Ill.  To consider the precision with which various variance components should be estimated for the
purpose of personalising treatment.
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Summary measures analysis of the treatment effect

Rather surprisingly, it turns out that task I.2 is easier than I.1. We use the fact that the summary
measure approach for balanced data under many circumstances (including the model presented here)
gives the same result as a mixed model. (See Senn, Stevens and Chaturvedi[21] for a discussion.) Here it
is supposed that the data for the trial are reduced to an average treatment effect for each patient

_ Kk
0y = J_Zl:dm/k @

and then the average of these is used to test the difference between treatment A and treatment B.
Where this is the case, the variance of the treatment estimate is

w?+20%/k
—

3)

This is the formula considered by Zucker et al[17] and is used by them to study the trade-off between
patients and cycles[4]. The mean so constructed can be used in a one sample t-test. Furthermore, the

variance at the patient level, that is to say 1/12 + 2(72/k is efficiently estimated as the variance of the n
observed summary measures and hence has (n —1) degrees of freedom. Thus, standard approaches

and software for sample size for the one sample t-test may be used[22]. The user simply has to decide
on the number of cycles and then calculate the standard deviation at the patient level for given assumed
values of i and o . For example, if K =3 then we may calculate that the variance of the summary

statisticis SD =/iy> + 20 [ k , which for our example yields a value of
1+(2><4) /3 =+/3.67 =1.91 . Since the estimate of the variance across all patients will be based

on N—1 degrees of freedom, this value can then be put into standard sample size software such as, for
example, nQuery®, which gives the following statement:

“When the sample size is 31, a single group t-test with a 0.050 two-sided significance level will
have 80% power to detect the difference between a null hypothesis mean of 0.000 and an
alternative mean of 1.000, assuming that the standard deviation is 1.910. “

Fixed effect analysis of the average treatment effect

This turns out to be trickier. This analysis is appropriate if either by hypothesis 1//2 is assumed to be
zero, or a test is made of the average treatment effect for the patients actually studied. Either of these
assumptions is a reasonable justification for the limited purpose of deciding whether or not there is
evidence of a difference between treatments[20]. After all, if A and B are identical for every patient,
then the difference between them cannot vary from patient to patient and hence 1//2 =0 .lItthen
follows that the random treatment-by-patient interaction plays no part in the inference and can be
removed from the variance component. This can be achieved in one of two simple ways. The first is to
estimate the variances of the differences independently for each patient. Each such estimate has
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(k —1) degrees of freedom and there being N of them we obtain an overall pooled estimate based on
n(k —1) degrees of freedom. Alternatively, we can fit patient as a factor in the model for the nk

differences so that since there are Nk —1 degrees of freedom in total and (n —1) for patient we are left
with (nk —1)—(n —l) = n(k —1) as before.

Note that since the cycle differences themselves reflect treatment effects, fitting patient effects to them
effectively removes the treatment-by-patient interaction. There is an extremely strong analogy to meta-
analysis where it has not been generally appreciated that the treatment-by-trial interaction is implicitly
removed from a fixed effects meta-analysis[23].

Note also, that in view of the fixed effects philosophy, the random treatment-by-patient interaction l//2
does not contribute to the variance estimate so that the estimate of the fixed effects variance as a

function of N and K is simply:

20°

nk

(4)

However, there is a problem in attempting to apply standard sample size approaches using this variance.

The treatment estimate from a given patient now has a SD of \/202/k . However, when any standard
sample size program estimates the number of patients required, it implicitly assumes that the degrees
of freedom for the variance are equal to N—1 . However, as already discussed they are n(k —1) . Thus

the degrees of freedom would be underestimated by Nk —2n+1 This means that the true power for
any sample size chosen using such an approach will be greater than sought. For example, if the value for

the SD of v/2x4/3 =+/2.67 =1.63 is used with the previous parameter settings, then nQuery®
proposes a sample size of 23. Such a sample size with 22 degrees of freedom for error would, indeed,

have 80% power but here the degrees of freedom are 23x (3—1) =46 and checking these values with
the non-central t-distribution yields a power of 82.0%. In fact, a calculation using the correct degrees of
freedom gives a sample size of 22 patients with a power of 80.2%.

Nor can the problem be dealt with, except approximately, by using the total number of cycles nk as the

target to be determined by using (7\/5 as the relevant standard deviation. Standard sample size
software would assume that the degrees of freedom for estimating o? were Nk —1 rather than

n(k —1) =nk —n . In consequence the degrees of freedom would be overestimated by n—1 .

In summary, the power can be checked by using the non-central t-distribution with non-centrality
parameter

o= (5)
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and degrees of freedom n(k —1) . The critical value of t_, n(k-1) must be established to use in

connection with this. In the accompanying programs a search is made for values of n that satisfy the
power requirement. One way to proceed is to start with an approximate value from the Normal
distribution using the simple formula

2
B 2(20,,2 +2,) o°
napprox - kAz (6)

and then increase the value of n until the power requirement is reached. This is the approach used for
cross-over trials in Cross-over Trials in Clinical Research[10].

For many applications the degrees of freedom effect is unimportant. For rare diseases, however, even a
difference of one patient can be of practical importance and the accompanying programs conduct a
stepwise search reducing the number of patients from the naive target number to find the minimum
number that has at least the target power.

Variances for naive estimates
If we only choose to use the information from a given patient to come to a conclusion regarding that
patient, then the appropriate estimate is simply that given by(2). However, since the estimate is being

used for that patient only, patient to patient variation is irrelevant and thus l//2 plays no role. Hence the
appropriate variance is simply (3) with (//2 =0, n=1 and hence the standard error is given by

2
SE = |2 (7)

naive k

For our example, given the planning parameters, the standard error of such an estimate would be

A2 X 22/3 =1.633. Thus in planning the number of cycles to be used in n-of-1 trials and if task 1.1

above is the objective, one approach is simply to set (7) equal to some target standard error and solve
for k . Of course, practical matters may limit the number of cycles that can be used.

In practice when using such an estimate, however, even if only that patient’s values are used to estimate
the treatment effect, there is still an issue as to how the variance o? itself should be estimated. In

practice the degrees of freedom per patients will be very small and hence the local estimates of o’ will
vary considerably from patient to patient[24] and there will be some value in using a pooled estimate
from other patients. If this is not done, then every new patient is simply studied as if no information
existed at all. This is unlikely to be sensible.

Variances for shrunk estimates

The usual general purpose of a clinical trial is to make future recommendations for patients and such
recommendations will often be made on the basis of diagnosis only and without benefit of any
experience of the patient on any of the possible treatment options. In other words, some average
treatment effect is estimated to inform future practice. A set of n-of-1 trials clearly allows such a use
also. Suppose, therefore, that a series of such trials have been conducted using a large number of
patients N. A treatment estimate will have been produced of the form
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and this will have the variance given by (3). Suppose, however, that we now consider the future
prediction of an effect for a patient 1' not recruited in the trial and that N is large. The major
uncertainty for predicting the true effect in this patient is not given by (3) (which is the variance of the

overall estimate) but by (//2 the variance of the difference of the true effect from patient to patient.

If we now study this future patient in K cycles we shall have two estimates of the possible effect of the
treatment for him or her, one T based on all previous patients with variance approximately equal to
Wz and one of the same form as (2) based on the data for that patient only and with variance 262/k .

As is well known, a weighted combination of these, with weights proportional to the reciprocal of the
respective variances, will provide a superior so-called shrunk estimate of the effect for such a patient[17,
18, 20]. The estimator is of the form

_(207/k)T+y’d,
- (202/k)+1//2

(9)

and the standard error of such an estimator is

2.2
SEshrunk = 220_ l// 2 (10)
\} Ky *+20

provided that the weights can be treated as known constants. (This issue is discussed further below.)

For a future patient who contributes no information, kK =0 and (10) reduces to i . As K increases then
(10) approaches the standard error for the naive estimator given by (7). However, (10) is always less
than (7) and for small 7 and K appreciable so. For the example we have considered we have

f2><22 x1?
SEshrunk = m = 085

and so approximately half the value for the naive estimator.

For planning purpose 1.1, (10) can be set equal to some target precision in order to decide on an
appropriate number of cycles for a future patient.

Precision of variance components
The formulae given for the shrunk estimates assume not only that the overall treatment effect has been

estimated with adequate precision but also that the variance components, (//2 and o have been
estimated adequately. Planning purpose Ill addresses this.
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Failure to estimate variance components adequately has two consequences: 1) the quoted standard
errors will be too small, as the formula assumes that the weights to construct the shrunk estimators are
known constants 2) the weights themselves will be suboptimal[25].

The precision by which the variance components have been estimated depends on the relevant degrees
of freedom, n(k —l) for ® and, since 1/12 cannot be estimated directly but has to be calculated from
an estimate of (3) and the estimate of o’ two degrees of freedom are relevant for l//2 ,h—=1and

n(k-1)

However, it is really the relative values of 1/12 and o’ that matter, or more precisely the relative value
of the weights, 202/k and y/z . The variance of the ratio of the two weights is derived in the appendix

and is given by

(n(k-1)-2)"(n(k-1)-4) . (11)

. (kz//z +1j2 2(n(k-1))’ (nk -3)
(n-1)
4

lllustration

The use of these formulae will now be illustrated. The values of i,0,A,¢ and £ previously assumed
will be used. The value of K the number of cycles will be varied and various plots will be presented.
Computer programs have been prepared in GenStat®, SAS® and R® to address all the calculations
covered in this note and are available on the website of the IDEAL project. The figures that are included
here have been produced in the GenStat® version of the program.

First, consider tasks I.1 and 1.2. These are addressed in Figure 1, which gives the desired sample size
using the variance formulae given by (3) and (4) but taking care to use the appropriate degrees of
freedom for the latter.
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Sample size calculation for n of 1 trials
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Figure 1 Sample sizes for fixed and random effects approaches

It is noticeable that as K increases the discrepancy between the sample size required for the fixed and
random effect approaches increases. This is because in the latter both Kk and N act equally on the
variance in (4) whereas in (3) only one of the components of variation is reduced by increasing K ; the
other is only reduced by increasing n.

As discussed in chapter 9 of Cross-over Trials in Clinical Research[9] an index of cost and practicality is
not just the number of patients but also the total amount of patient time on treatment. One way of
looking at this is in terms of the total number of cycles. This is illustrated in Figure 2, which shows that
the total number of cycles varies very little with the number of cycles per patient for the fixed effects
approach but continues to rise for the random effects approach.
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Sample size calculation for n of 1 trials
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Figure 2 Numbers of cycles for two approaches to analysis

The standard errors of naive and shrunk estimators are given in Figure 3. It can be seen that the shrunk
estimate has a considerable advantage over the naive estimate until the number of cycles is large but
even then the standard error is lower. The horizontal dashed line shows the standard error of prediction
making no use of the patient’s own data and even this is better than the naive estimator until the
number of cycles exceeds 8.
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Standard errors for individual estimates
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Figure 3 Standard errors of shrunk and naive estimators for the effect for a given patient as a function of the number of cycles

Finally, Figure 4 gives the standard error of the ratio of weights for constructing shrunk estimates for the
case where there are three cycles per patient. The reference line gives the ratio of the weights
themselves.
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Standard errors for ratios of weights
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Figure 4 Standard error of the ratio of weights for constructing shrunk estimates as a function of the number of patients. The
case with k = 3 cycles is illustrated.

Discussion

As within any planning problem, the key issue is to obtain some sort of impression of reasonable
parameter values in advance of running the trial. Here it is best to regard A as a function of the disease
and hence a desirable sought-for value rather than a probable one. As regards o , again this is best
regarded as a property of the disease not the treatment and previous experience may help. The most
difficult of the three is i . As has been pointed out elsewhere[26], trialists have had a very bad track
record of estimating the personal component of treatment response and in general plausible estimates
for various diseases are not available simple because the sort of study necessary to estimate them, for
example n-of-1 studies, have not been conducted . A pilot study may be the best approach. This raises
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general design considerations beyond the scope of this paper but the reader is referred to discussion
papers on this subject[27, 28].

The fomulae and the figures show that very different purposes for n-of-1 trials may require very
different samples sizes. For the limited purpose of identifying treatments that can have an effect, the
fixed effects approach to analysis is reasonable and this will yield the most modest requirement for
sample size.

At the other end of the scale, Figure 4 paints a very gloomy picture. Large numbers of patients will be
needed to estimate the components of variation used in producing shrunk estimates with adequate
precision. Thus if one of the purposes of beginning a programme of n-of-1 studies is to provide improved
methods of personalising treatment for individual future patients rather many patients will need to be
studied in the first place. At the moment, this does not seem to be a realistic prospect. Much is talked
about personalising medicine but little is done that treats components of variance seriously.

Figure 2 shows that for the fixed effects approach the total number of cycles required to be observed is
fairly stable as K the number of cycles per patient increases. This may be understood as follows. Let the
total number of cycles be M =nk . We then have that for any fixed value m (4) does not change with

K . What changes are the degrees of freedom for estimating the variance which we may write as

n(k—l):mu .

(12)
Thus we get some increase of degrees of freedom with increasing numbers of cycles per patient but the
effect becomes relatively less important in particular because the variance of the t-distribution itself
approaches 1 as the degrees of freedom increase.
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Appendix

From (9) we have that the ratio p of the true weights for constructing the shrunk estimator would be

2

__v kv
20°/k  20°

P (13)

Now let the estimate of the variance within o, be |, and of the total variance W+ 20'2/k be V; .

Substitute V,, for o’ and V; —2VW/k for l//2 in (13) to obtain an estimate of the ratio of weights p of

[)zEV—T—l. (14)
2V,

For the purpose of estimating the variance, the constant term -1 in (14) may be ignored so from now on

we may work with p" = p+1.

Now we write

(15)

This may seem unnecessarily complicated but the point is that the term in the curly parentheses is an

F

nn(k-1) statistic.

In general, the variance of a random variable distributed F,  is

20° (v+w-2)
v(a)—Z)z(a)—4)’

Var(Fm) = >4 . (16)
(See, for example, Evans, Hastings and Peacock[29] p69.) Hence, by substituting v=n-1, o= n(k —1)

in (16) and multiplying by the square of rightmost term of(15) we obtain the variance of /3* and hence

of p as

N ? 2(n(k-1))’ (nk -3) .
Y (p)_( 1j (n-1) 1)

20" (n(k-1)-2) (n(k-1)-4)

and the

Note that for the variance given by (17) to be defined we must haven>1 and n>

minimum value for the number of cycles for estimation of components of variation to be possible is
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k =2 which would yield a minimum value of N =5. Since N must be integer, for K =3 we have N =3
as a minimum and for K =4 , we have N=2 . The product nk for these three cases is 10, 9 and 8 total
cycles respectively.
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