
(c) Stephen Senn 2016 1

On being Bayesian
Namur 13 October 2016

Stephen Senn



Acknowledgements
Thank you for the kind invitation

This work is partly supported by  the European Union’s 7th 
Framework Programme for research, technological 
development and demonstration under grant agreement 
no. 602552. “IDEAL”

The work on historical placebos is joint with Olivier 
Collignon and Anna Schritz in my group

(c) Stephen Senn 2

2(c) Stephen Senn 2016



Basic Thesis
• The Bayesian approach holds out the promise of 

providing a principled way of synthesizing 
difference sources of information

• This is, however, more difficult than many 
suppose

• Key tasks are
– Appropriate formulation of prior distributions
– Establishing exactly what the objective content of such prior 

distributions is
– Understanding what a prior distribution commits you to believe
– Developing insight (mathematics is not enough)
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Outline

• Brief, basic reminder as to how it works
– Illustrated using a simple example

• What prior distributions have to reflect
• Some examples to check understanding

– A simple binary outcome
– Dawid’s selection paradox
– Historical placebos

• Some advice
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Key features of Bayesian inference

1. Probability is given a personal and subjective 
interpretation

2. Probabilities do not have to be defined in terms of 
(theoretical) infinite repetitions

3. Probability statements about parameters and 
predictions become the goal of inference

4. There is nothing inherently special about a defined set-
up for collecting data

5. To be fully Bayesian utilities should be considered also
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An Example
My compact disc (CD) player* allowed me to 
press tracks in sequential order by pressing  
play or in random order by playing shuffle.

One  day I was playing the CD Hysteria by Def Leppard. This CD has 12 
tracks.

I thought that I had pressed the shuffle button but the first track played 
was ‘women’, which is the first track on the CD.

Q. What is the probability that I did, in fact, press the shuffle button as 
intended?

*I now have an Ipod nano
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A Bayesian Solution

We have two basic hypotheses:

1) I pressed shuffle.

2) I pressed play.

First we have to establish a so-called prior probability for these 
hypotheses: a probability before seeing the evidence.

Suppose that the probability that I press the shuffle button when I 
mean to press the shuffle button is 9/10. The probability of 
making a mistake and pressing the play button is then 1/10.
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Next we establish probabilities of events given theories. These 
particular sorts of probabilities are referred to as likelihoods ,a 
term due to RA Fisher(1890-1962).

If I pressed shuffle, then the probability that the first track will be 
‘women’ (W) is 1/12. If I pressed play, then the probability that 
the first track is W is 1.

For completeness (although it is not necessary for the solution) 
we consider the likelihoods had any other track apart from 
‘women’ (say X) been played.

If I pressed shuffle then the probability of X is 11/12. If I pressed 
play then this probability is 0.



We can put this together as follows

Hypothesis Prior
Probability

P

Evidence Likelihood P x L

Shuffle 9/10 W 1/12 9/120
Shuffle 9/10 X 11/12 99/120
Play 1/10 W 1 12/120
Play 1/10 X 0 0
TOTAL 120/120 = 1
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After seeing (hearing) the evidence, however, 
only two rows remain

Hypothesis Prior
Probability

P

Evidence Likelihood P x L

Shuffle 9/10 W 1/12 9/120
Shuffle 9/10 X 11/12 99/120
Play 1/10 W 1 12/120
Play 1/10 X 0 0
TOTAL 21/120
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The probabilities of the two cases which remain do not add up 
to 1. 

However, since these two cases cover all the possibilities which 
remain, their combined probability must be 1.

Therefore we rescale the individual probabilities to make them 
add to 1.

We can do this without changing their relative value by dividing 
by their total, 21/120.

This has been done in the table below.



So we rescale by dividing by the total 
probability

Hypothesis Prior
Probability

P

Evidence Likelihood P x L Posterior 
Probability

Shuffle 9/10 W 1/12 9/120 (9/120)/(21/120)
=9/21

Shuffle 9/10 X 11/12 99/120

Play 1/10 W 1 12/120 (12/120)/(21/120)
=12/21

Play 1/10 X 0 0

TOTAL 21/120 21/21=1
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The probability I pressed play is 9/21
This completes the Bayesian solution



Characteristics of prior 
distributions

• They must be what you would use to bet on in 
advance of getting any further data

• No amount of further data in any form should be 
capable of causing you to revise your prior 
distribution qua prior
– Updating your prior distribution to become a posterior is quite 

another matter
– Remember that to the extent defined by the model the prior 

distribution and the data are exchangeable
– Wanting to change your prior is like wanting to change some 

data
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An example to get you started
• You are proposing to estimate the probability 

of a binary event
– E.g. cure/no cure

• You use a uniform prior on 
• You now proceed to study 10,000 occurrences
• Which does your prior distribution say is more 

likely?
– 10,000 successes
– 5,000 successes 5,000 failures, in any order
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Case Ascertainment
• One of the things we learn in statistics is 

that it matters how we ascertain cases
• The selection procedure affects our 

inferences
• We react differently if we learn that the 

results we are being shown are from a 
treatment that was one of many if it was 
chosen randomly or it was chosen as the 
best observed
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A Selection Paradox of Dawid’s
• Suppose that we estimate treatment means from 

a number of treatments in clinical research
• We use a standard conjugate prior
• Since Bayesian analysis is full conditioned on 

the data, then for any treatment the posterior 
mean will not depend on why we have chosen 
the treatment
– At random
– Because it gave the largest response

See DAWID, A. P. (1994), in Multivariate Analysis and its Applications, eds. T. W. 
Anderson, K. a.-t. a. Fang, & I. Olkin 
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A Simulation to Illustrate This
• Simulate 10 true means
• For each true mean 

simulate observed value
• Now select in one of two 

ways
1. Randomly choose one 

member from each group 
of 10

2. Choose the member with 
the highest observed 
mean
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What the Bayesian theory says
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What the simulation shows
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Theory says 0.2



Does this mean the 
frequentist intuition is wrong?
• Not necessarily
• One needs to think carefully about what 

the prior distribution implies
• Actually, even if the prior variance were 

large the prior distribution would be very
informative about two things
– Normality
– Conditional independence
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The explanation of the 
paradox

• Having a Normal prior is equivalent to having 
seen thousands of true means

• Furthermore, a priori, the true mean of any value 
in your sample of ten is exchangeable with any 
one of these thousands of means

• Why should the fact that it is locally the highest 
have any effect on your Bayesian calibration?

• Now let us see what happened when we no 
longer make the means exchangeable
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A hierarchical simulation
• Simulate cluster mean
• Then simulate for cluster 

members
• Simulation run two 

ways
1. Randomly choose 

one member from 
each group of 10

2. Choose the member 
with the highest 
observed mean
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What the simulation shows
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The regression equations are 
now quite different depending on 
how the means were chosen



Lessons

• As soon as you replace the conjugate prior 
with a hierarchical one you get very 
different results according to selection

• Be very careful to establish what your prior 
implies

• True Bayesian inference does not 
necessarily give you the license to ignore 
frequentist lessons you might think
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Historical control
• In many indications, the same treatment is often 

used as a control
– Either a placebo
– Or a standard treatment

• This means that when a new treatment is trialled 
there will be a lot of information from previous 
trials on the control being used

• Since Bayes is supposed to be a way of 
synthesizing all information, how would we do 
this?
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Problem

• Obviously a historical control is not worth 
the same as a concurrent control

• How should we deal with this?
• Ask the following question
• Given a choice between an infinite number 

of historical controls and n concurrent 
controls how large does n have to be 
before I prefer the latter?
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Model (frequentist formulation)
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But….

• When you start thinking like this you begin 
to wonder

• Is it really the number of historical control 
patients that I have that is important?

• Or should I really be thinking about the 
data in some other way?

• What do the data really represent?
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Sacred cow

The TARGET study

• One of the largest studies ever run in osteoarthritis
• 18,000 patients
• Randomisation took place in two sub‐studies of equal size

o Lumiracoxib versus ibuprofen
o Lumiracoxib versus naproxen

• Purpose to investigate cardiovascular and gastric tolerability of 
lumiracoxib

o That is to say side‐effects on the heart and the stomach
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Baseline Demographics

Sub‐Study 1 Sub Study 2
Demographic 
Characteristic

Lumiracoxib
n = 4376

Ibuprofen
n = 4397

Lumiracoxib
n = 4741

Naproxen
n = 4730

Use of low‐dose
aspirin

975 (22.3) 966 (22.0) 1195 (25.1) 1193 (25.2)

History of vascular 
disease

393 (9.0) 340 (7.7) 588 (12.4) 559 (11.8)

Cerebro‐vascular
disease

69  (1.6) 65 (1.5) 108 (2.3) 107 (2.3)

Dyslipidaemias 1030 (23.5) 1025 (23.3) 799  (16.9) 809  (17.1)

Nitrate use 105 (2.4) 79 (1.8) 181 (3.8) 165  (3.5)
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Baseline Chi‐square P‐values

Model Term
Demographic 
Characteristic

Sub‐study
(DF=1)

Treatment given Sub‐
study
(DF=2)

Treatment
(DF=2)

Use of low‐dose
aspirin

< 0.0001 0.94 0.0012

History of vascular 
disease

< 0.0001 0.07 <0.0001

Cerebro‐vascular
disease

0.0002 0.93 0.0208

Dyslipidaemias <0.0001 0.92 <0.0001

Nitrate use < 0.0001 0.10 <0.0001
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Outcome Variables
All four groups

Sub‐Study 1 Sub Study 2
Outcome
Variables

Lumiracoxib
n = 4376

Ibuprofen
n = 4397

Lumiracoxib
n = 4741

Naproxen
n = 4730

Total of 
discontinuations

1751 
(40.01)

1941 
(44.14)

1719 
(36.26)

1790 
(37.84)

CV events 33
(0.75)

32 
(0.73)

52 
(1.10)

43
(0.91)

At least one AE 699
(15.97)

789 
(17.94)

710 
(14.98)

846 
(17.89)

Any GI 1855
(42.39)

1851 
( 42.10)

1785 
(37.65)

1988
(21.87)

Dyspepsia 1230 
(28.11)

1205 
(27.41)

1037 
(21.87)

1119 
(23.66)

35(c) Stephen Senn 2016



Deviances and P‐Values
Lumiracoxib only fitting Sub‐study

Statistic

Outcome
Variables

Deviance P‐Value

Total of 
discontinuations

13.61 0.0002

CV events 2.92 0.09

At least one AE 1.73 0.19

Any GI 21.31 <0.0001

Dyspepsia 47.34 < 0.0001
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A Simple Model

An unrealistic balanced trial
݊ patients per arm, ܿ centres in total with ݌ patients per centre

2݊ ൌ ,ܿ݌ ݊ ൌ
ܿ݌
2

Between-centres variance is 2 within-centre variance is 2.

Design Variance of Treatment Contrast

Completely randomised
4 ఊమାఙమ  

௖௣
Randomised blocks (centre blocks) 4ఙ

మ

௖௣

Cluster randomised
4
ఊమା഑

మ

೛  
௖

When using external controls we have at least the variability of a cluster randomised trial

37
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Lessons from TARGET

• If you want to use historical controls you will have to work very hard
• You need at least two components of variation in your model

oBetween centre
oBetween trial

• And possibly a third
oBetween eras

• What seems like a lot of information may not be much
• Concurrent control and randomisation seems to work well
• Moral for any Bayesian: find out as much as possible about any data 
you intend to use

38
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That example revisited

The question
• You are proposing to estimate 
the probability  of a binary 
event

oE.g. cure/no cure
• You use a uniform prior on 
• You now proceed to study 
10,000 occurrences

• Which does your prior 
distribution say is more likely?

o10,000 successes
o5,000 successes 5,000 failures, 
in any order

The solution

• You started with an 
‘uninformative prior

• After 10,000 trials the observed 
proportion must be pretty much 
what you believe is the true 
probability

• But you said every true 
probability is equally likely

• Therefore 5,000 success in any 
order is just as likely as 10,000 
success
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Advice

• Think hard about any prior distribution
• Try to establish the objective content of any prior distribution
• Uninformative prior distributions are not appropriate for nuisance 
parameters

• Be prepared to think hierarchically
• Check that

o The prior distribution states your current belief
oNo data in any shape of form would cause you to abandon it

• If the result seems to contradict frequentist wisdom think carefully 
why

• Develop statistical insight – understand what being Bayesian means
• As in any statistically system, ask yourself the question

oHow did I get to see what I see?
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