

Randomization Tests in the Presence of Selection Bias

D. Uschner¹ R.-D. Hilgers¹ W.F. Rosenberger² N. Heussen¹

¹RWTH Aachen University

²George Mason University Fairfax VA

22nd August 2016

This research is part of the IDeAI project http://www.ideal.rwth-aachen.de and has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under Grant Agreement no 602552.

- ► In small population groups, the assumptions of parametric tests are not fulfilled.
- Randomization tests yield a non-parametric alternative, that relies only on the assumption of randomization.
- > Problem: Randomization is susceptible to third order selection bias.

Research Question and Tasks

Does randomization based inference yield valid inferences when selection bias is present?

- > Develop model for selection bias in randomization tests.
- > Analyze the properties of randomization tests when selection bias is present.

Notation

Let the randomization sequence $T = (T_1, \ldots, T_N)$ be a random vector with T_i taking values

$$t_i = \begin{cases} 0 & \text{if patient } i \text{ is allocated to } C \\ 1 & \text{if patient } i \text{ is allocated to } E, \end{cases}$$

and let the imbalance after *i* patients be denoted by

$$D_i = \sum_{j=1}^i (2 \cdot T_i - 1).$$

The set of all randomization sequences of a randomization procedure ${\cal M}$ is denoted by

$$\Omega_{\mathcal{M}} \subseteq \Omega := \{0,1\}^{N}.$$

EP7 HEALTH 2013 . 602552

MSA

Randomization procedures

Rosenberger and Lachin, 2016

Randomization based inference

Null hypothesis

The response y_i of each patient *i* is independent of the treatment he received:

 $H_0: y_{i|E} = y_{i|C}$

> Difference in means test statistic is a measure for the extremeness of the result:

$$S(t) = rac{N}{2}\sum_{i=1}^{N} \left(t_i \cdot y_i - (1-t_i) \cdot y_i\right).$$

► H₀ is rejected if the probability to observe a more extreme value of the test statistic is lower than 5%:

$$p = \sum_{t \in \Omega} \mathbbm{1}(|S(t)| \geq |S(t_{obs})|) \cdot \mathbb{P}(T=t) < 0.05.$$

Instructive example

Let N = 8 patients be allocated with RAR. Assume $y_{obs} = (1, 6, 7, 2, 8, 4, 3, 5)$ and $t_{obs} = (1, 1, 0, 1, 0, 0, 1, 0)$. The observed test statistic is

$$S(t_{obs})=-3,$$

This yields a *p*-value of

$$p = rac{|\{t: |S(t)| \ge |-3|\}|}{70} = rac{8}{70} > 0.05.$$

 \Rightarrow the null hypothesis cannot be rejected.

	t	P(T = t)	S(t)
1	11110000	$\frac{1}{70}$	-1
2	$1\ 1\ 1\ 0\ 1\ 0\ 0$	$\frac{1}{70}$	2
3	$1 \ 1 \ 0 \ 1 \ 1 \ 0 \ 0$	$\frac{1}{70}$	-0.5
4	$1 \ 0 \ 1 \ 1 \ 1 \ 0 \ 0 \ 0$	$\frac{1}{70}$	0
5	$0\ 1\ 1\ 1\ 1\ 0\ 0\ 0$	$\frac{1}{70}$	2.5
÷	:		:
17	$1 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0$	$\frac{1}{70}$	-3
÷	:		:
70	00001111	$\frac{1}{70}$	1

Table: Distribution of the test statistic S

FP7 HEALTH 2013 - 602552

Randomization Tests in the Presence of Selection Bias

Instructive example

Let N = 8 patients be allocated with RAR. Assume $y_{obs} = (1, 6, 7, 2, 8, 4, 3, 5)$ and $t_{obs} = (1, 1, 0, 1, 0, 0, 1, 0)$. The observed test statistic is

$$S(t_{obs})=-3,$$

This yields a *p*-value of

$$p = rac{|\{t: |S(t)| \ge |-3|\}|}{70} = rac{8}{70} > 0.05.$$

 \Rightarrow the null hypothesis cannot be rejected.

Figure: Distribution of the test statistic S

Setting

- Trial is randomized.
- Randomization is restricted.
- Patient population is not homogeneous.
- Past allocations can be unmasked.
- Investigator favors one treatment.

Biasing Policy

Following the convergence strategy proposed by Blackwell and Hodges (1957), we introduce the following model for the biased responses:

$$ilde{y}_i = egin{cases} y_i + \eta & D_{i-1}(t_{obs}) < 0 \ y_i & D_{i-1}(t_{obs}) = 0 \ y_i - \eta & D_{i-1}(t_{obs}) > 0 \end{cases}$$

$$\Leftrightarrow \tilde{y}_i = y_i - \eta \cdot \operatorname{sign}(D_{i-1}(t_{obs}))$$

with η the strength of the selection bias.

Biasing Policy

If N = 4 and $t_{obs} = (1, 0, 0, 1)$ and third order selection bias is present with selection effect $\eta > 0$, we will observe the biased responses

$$egin{array}{ll} ilde{y}_1 = extsf{y}_1 \ ilde{y}_2 = extsf{y}_2 - \eta \ ilde{y}_3 = extsf{y}_3 \ ilde{y}_4 = extsf{y}_4 + \eta \end{array}$$

instead of the unbiased responses y_1, \ldots, y_N .

Aim: Estimate type-I-error probability for increasing selection effect and different randomization procedures.

Simulation settings

- Sample size N = 16
- ▶ Randomization procedure $M \in \{MP(4), PBR(8), RAR\}$
- In each setting, conducted r = 60,000 randomization tests.
- ► For each randomization test, generated $t_{obs} \in \Omega_M$ and $\tilde{y}_{obs} = (\tilde{y}_1, \ldots, \tilde{y}_N)$, with $\tilde{y}_i = y_i \eta \cdot \text{sign}(D_{i-1}(t_{tobs}))$ and y_i realization of $Y_i \sim \mathcal{N}(0, 1)$.
- ▶ The type-I-error rate is the proportion of *p*-values lower than 5%.

(DeA)

- Type I error rate elevated with increasing selection effect η.
- Effect differs with the randomization procedure.
- Permuted Block randomization is most susceptible to selection bias.

Figure: Type-I-error rate of the randomization test

Lemma

If $D_N(t)=0$ for all $t\in\Omega_{\mathcal{M}}$, the bias of the responses leads to a shift of the test statistic

$$S(t, \tilde{y}) = S(t, y) - \frac{2\eta}{N} \cdot shift(t),$$

where the shift can be expressed as

$$\textit{shift}(t) = \sum_{i=1}^{N} (2 \cdot t_i - 1) \cdot \text{sign}(D_{i-1}(t_{obs}))$$

Particularly, $shift(t_{obs}) = \#rto(t_{obs}) := |\{i \in \{1, ..., N-1\} : D_{i-1}(t_{obs}) = 0\}|.$

Cox (1982): Condition randomization on any aspects of the treatment arrangements which there is reason to think relevant.

Theorem

Conditioning on $shift(t_{obs})$ yields an unbiased test with p-value

$$p_{adj} = \sum_{t \in \Omega} \mathbb{1}(|S(t)| \ge |S(t_{obs})|) \cdot \mathbb{P}(T = t| shift(t) = shift(t_{obs}))$$

where the conditional probability can be computed by re-weighting:

$$\mathbb{P}(\mathcal{T}=t| \textit{shift}(t)=\textit{shift}(t_{obs})) = rac{\mathbb{P}(\mathcal{T}=t)\cdot\mathbb{1}(\textit{shift}(t)=\textit{shift}(t_{obs}))\cdot|\Omega_{\mathcal{M}}|}{|\{t\in\Omega_{\mathcal{M}}:\textit{shift}(t)=\textit{shift}(t_{obs})\}|}$$

Conditional testing approach to achieve adjusted test

Instructive Example

Condition on
$$shift(t) = shift(t_{obs})$$
:

	t	P(T = t)	S(t)	shift(t)
1	11110000	1/70	-1	0
2	11101000	1/70	2	0
÷	:	:	÷	:
15	00111100	1/70	1.5	-2
16	$1\ 1\ 1\ 0\ 0\ 0\ 1\ 0$	1/70	-0.5	2
17	$1 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0$	1/70	-3	2
18	$1 \ 0 \ 1 \ 1 \ 0 \ 0 \ 1 \ 0$	1/70	-2.5	2
19	$0\ 1\ 1\ 1\ 0\ 0\ 1\ 0$	1/70	0	0
:	÷		÷	i
70	00001111	1/70	1	0

Table: Randomization distribution

Conditional testing approach to achieve adjusted test

Instructive Example

Condition on $shift(t) = shift(t_{obs})$ $\Rightarrow p_{adj} = 0.2!$

	t	P(T = t)	S(t)	shift(t)
1	11110000	0	-1	0
2	11101000	0	2	0
÷	÷	÷	÷	÷
15	00111100	0	1.5	-2
16	$1\ 1\ 1\ 0\ 0\ 0\ 1\ 0$	1/15	-0.5	2
17	$1 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0$	1/15	-3	2
18	$1 \ 0 \ 1 \ 1 \ 0 \ 0 \ 1 \ 0$	1/15	-2.5	2
19	0 1 1 1 0 0 1 0	0	0	0
÷	÷		÷	÷
70	00001111	0	1	0

Table: Randomization distribution

Result: Adjusted test maintains type-l-error rate

- The adjusted test maintains the type-l-error rate for increasing η.
- The type-l-error rate is equal to the case η = 0 of the unadjusted test.
- Result does not depend on the randomization procedure.

Figure: Type-I-error rate of the randomization test

- ▶ Randomization based inference generally does not control selection bias.
- Adjusted randomization test maintains type-I-error rate.
 - ⇒ Conduct adjusted randomization test when a trial is suspected to be influenced by selection bias.
- Randomization based inference provides a valid alternative to parametric tests
- Small population group trials may benefit from the non-parametric analysis
- > Possible extensions: Other test statistics, other types of bias, unbiased estimators.

