

Efficient tests to demonstrate the similarity of dose response curves with regard to small sample sizes

Kathrin Möllenhoff, Ruhr-Universität Bochum Holger Dette, Ruhr-Universität Bochum Frank Bretz, Novartis Basel

Birmingham, August 2016

FP7 HEALTH 2013 - 602552

Outline

Motivation

- 2 Similarity of curves
- 3 Efficient tests for the similarity of curves
- ④ Finite sample properties
- 5 A Case Study- the IBS data set
- 6 Conclusions & Extensions

Motivation

- populations of different geographic regions may bear differences in dose response and/or safety issues
 - \longrightarrow goal: ability of extrapolation of study results
 - \longrightarrow ICH E5 provides a guideline for conducting a bridging study which claims similarity in dose response, efficacy and safety
 - \longrightarrow demonstrating similarity of curves becomes an issue
- another application of the new tests: comparison of different drugs containing the same active substance in order to claim bioequivalence. Traditionally approaches as the observation of AUC or Cmax may be misleading
 - \longrightarrow goal: developing a test which takes the whole curve into account

Comparing curves - The setting

Kathrin Möllenhoff Efficient tests to demonstrate the similarity of dose response curves, with regard to

Comparing curves - The setting II

• Two dose response curves (from two samples)

$$egin{aligned} \mathsf{Y}_{\ell,i,j} &= m_\ell(\mathsf{x}_{\ell,i},artheta_\ell) + arepsilon_{\ell,i,j} \; ; \quad \ell = 1,2; \ j &= 1,\ldots,n_{\ell,i} \; ; \quad i = 1,\ldots,k_\ell, \end{aligned}$$

- $arepsilon_{\ell,i,j}$ independent $\sim \mathcal{N}(0,\sigma_\ell^2)$ ($\ell=1,2$)
- $x_{\ell,i} \in \mathcal{X}$ (dose levels)
- $\vartheta_\ell \in \mathbb{R}^{d_\ell}$ (parameter in model m_ℓ)

Problem: Are the dose response curves m_1 and m_2 similar?

Comparing curves - The setting II

• Two dose response curves (from two samples)

$$egin{aligned} Y_{\ell,i,j} &= m_\ell(x_{\ell,i},artheta_\ell) + arepsilon_{\ell,i,j} \; ; \quad \ell = 1,2; \ j &= 1,\ldots,n_{\ell,i} \; ; \quad i = 1,\ldots,k_\ell, \end{aligned}$$

- $arepsilon_{\ell,i,j}$ independent $\sim \mathcal{N}(0,\sigma_\ell^2)$ ($\ell=1,2$)
- $x_{\ell,i} \in \mathcal{X}$ (dose levels)
- $\vartheta_\ell \in \mathbb{R}^{d_\ell}$ (parameter in model m_ℓ)

Problem: Are the dose response curves m_1 and m_2 similar?

Measures of similarity

- d: a metric measuring the distance between m_1 and m_2 .
- Hypothesis of similarity:

 $H_0: d(m_1, m_2) \geq \epsilon$ versus $H_1: d(m_1, m_2) < \epsilon$

```
(here \epsilon is a pre-specified constant).
```

Examples

maximum absolute difference

$$d_{\infty}(m_1, m_2) = \max_{x \in \mathcal{X}} |m_1(x, \vartheta_1) - m_2(x, \vartheta_2)|$$

► squared *L*₂-distance

$$d_2(m_1,m_2) = \int_{\mathcal{X}} (m_1(x,\vartheta_1) - m_2(x,\vartheta_2))^2 dx$$

Measures of similarity

- d: a metric measuring the distance between m_1 and m_2 .
- Hypothesis of similarity:

 $H_0: d(m_1, m_2) \geq \epsilon$ versus $H_1: d(m_1, m_2) < \epsilon$

```
(here \epsilon is a pre-specified constant).
```

- Examples
 - maximum absolute difference

$$d_{\infty}(m_1,m_2) = \max_{x \in \mathcal{X}} |m_1(x,\vartheta_1) - m_2(x,\vartheta_2)|$$

► squared *L*₂-distance

$$d_2(m_1,m_2) = \int_{\mathcal{X}} (m_1(x,\vartheta_1) - m_2(x,\vartheta_2))^2 dx$$

Efficient tests for similarity

Kathrin Möllenhoff Efficient tests to demonstrate the similarity of dose response curves, with regard to

イロト イポト イヨト イヨト

Tests based on distances

• calculate (parametric) estimates and therefore the distance of m_1 and m_2 :

$$\hat{m}_1 = m_1(\cdot, \hat{\vartheta}_1), \ \hat{m}_2 = m_2(\cdot, \hat{\vartheta}_2), \ \hat{d} = d(\hat{m}_1, \hat{m}_2)$$

• Decide for similarity, i.e. reject the hypothesis

 $H_0: d(m_1, m_2) \geq \epsilon$

whenever

$$\hat{\pmb{d}} = d(\hat{m}_1, \hat{m}_2) < q$$

• **Problem:** how do we find the critical value q?

Estimating the distance between two curves- the asymptotic approach

• Empirical process theory : $d_2(\hat{m}_1, \hat{m}_2) - d_2(m_1, m_2) \stackrel{s}{\sim} \mathcal{N}\Big(0, \frac{\tau^2}{n_1 + n_2}\Big)$, where

$$\tau^2 = \int_{\mathcal{X}\times\mathcal{X}} (m_1(x,\vartheta_1) - m_2(x,\vartheta_2)) \cdot (m_1(y,\vartheta_1) - m_2(y,\vartheta_2)) k(x,y) dx dy$$

• If the true absolute difference curve has only one extremal point, we have

$$d_{\infty}(\hat{m}_1, \hat{m}_2) - d_{\infty}(m_1, m_2) \stackrel{*}{\sim} \mathcal{N}\Big(0, \frac{\sigma_{d_{\infty}}^2}{n_1 + n_2}\Big),$$

where $\sigma_{d_{\infty}}^2$ depends on the location of the extremal point

• It is very difficult to estimate τ^2 and $\sigma_{d_{\infty}}$, especially for small sample sizes

Bootstrap test for similarity

Generate data under the null hypothesis

- Estimate ϑ_1, ϑ_2 under the restriction of the null hypothesis, that is the estimates fulfill $d(m_1, m_2) = \epsilon$
 - \rightsquigarrow constrained estimates $\hat{\hat{\vartheta}}_1, \hat{\hat{\vartheta}}_2$
 - e.g. for $d = d_{\infty}$, $\hat{\hat{\vartheta}}_1, \hat{\hat{\vartheta}}_2$ satisfy $\sup_{x \in \mathcal{X}} |m_1(x, \hat{\vartheta}_1) m_2(x, \hat{\vartheta}_2)| = \epsilon_{\infty}$

• Generate bootstrap data (parametric bootstrap)

$$Y_{\ell,i,j}^* = m_{\ell}(x_{\ell,i},\hat{\vartheta}_{\ell}) + \hat{\sigma}_{\ell}\varepsilon_{\ell,i,j}^*$$

where $arepsilon_{\ell,i,j}^{*}$ are i.i.d. $\sim \mathcal{N}(0,1)$

Bootstrap test for similarity

Generate data under the null hypothesis

- Estimate ϑ_1, ϑ_2 under the restriction of the null hypothesis, that is the estimates fulfill $d(m_1, m_2) = \epsilon$
- $\stackrel{\longrightarrow}{\quad} \textbf{constrained estimates } \hat{\hat{\vartheta}}_1, \hat{\hat{\vartheta}}_2 \\ \text{e.g. for } d = d_{\infty}, \ \hat{\hat{\vartheta}}_1, \hat{\hat{\vartheta}}_2 \text{ satisfy sup}_{x \in \mathcal{X}} |m_1(x, \hat{\vartheta}_1) m_2(x, \hat{\vartheta}_2)| = \epsilon_{\infty}$

• Generate bootstrap data (parametric bootstrap)

$$Y^*_{\ell,i,j} = m_{\ell}(x_{\ell,i},\hat{\vartheta}_{\ell}) + \hat{\sigma}_{\ell}\varepsilon^*_{\ell,i,j}$$

where $arepsilon_{\ell,i,j}^{*}$ are i.i.d. $\sim \mathcal{N}(0,1)$

Bootstrap test for similarity II

- Calculate $\hat{artheta}_1^*, \hat{artheta}_2^*$ from the bootstrap data $Y^*_{\ell,i,j}$
- Calculate $\hat{d}^* = d(\hat{m}_1^*, \hat{m}_2^*)$, for $d = d_\infty$ that is $\hat{\mathbf{d}}_\infty^* = \sup_{x \in \mathcal{X}} |m_1(x, \hat{\vartheta}_1^*) m_2(x, \hat{\vartheta}_2^*)|$
- Repeat this procedure B times
- $\bullet\,$ If $\hat{d}^{*(1)},\ldots,\hat{d}^{*(B)}$ denote the ordered bootstrap replicates the hypothesis

$$H_0: d(m_1, m_2) \geq \epsilon$$

is rejected, whenever

$$\mathbf{\hat{d}} < \mathbf{\hat{d}}^{*(\lfloor \mathbf{B} \alpha \rfloor)}$$

- Theoretical properties:
 - \blacktriangleright the bootstrap test has asymptotic level α
 - the bootstrap test is consistent

Finite sample properties

•
$$m_1(x,\beta_1) = \beta_{11} + \frac{\beta_{12}x}{\beta_{13}+x}, m_2(x,\beta_2) = \beta_{21} + \beta_{22} \cdot (\exp(\frac{x}{\beta_{23}}) - 1), \mathcal{X} = [0,4],$$

where $\beta_1 = (\beta_{11},\beta_{12},\beta_{13}) = (1,2,1)$ and $\beta_2 = (\beta_{21},\beta_{22},\beta_{23}) = (\delta,2.2,8)$

• $H_0: d_\infty(m_1,m_2) \geq 1$ versus $H_1: d_\infty(m_1,m_2) < 1$

10 / 17

The d_{∞} bootstrap test- Simulation of the nominal level

			$\alpha = 0.05$		lpha= 0.1	
			(σ_1^2, σ_2^2)		(σ_1^2,σ_2^2)	
(n_1, n_2)	δ	d_∞	(0.25, 0.25)	(0.5, 0.5)	(0.25, 0.25)	(0.5, 0.5)
(10, 10)	0.25	1.5	0.001	0.001	0.000	0.004
(10, 10)	0.5	1.25	0.005	0.011	0.013	0.030
(10, 10)	0.75	1	0.045	0.037	0.102	0.086
(20, 20)	0.25	1.5	0.000	0.000	0.000	0.000
(20, 20)	0.5	1.25	0.001	0.004	0.006	0.018
(20, 20)	0.75	1	0.034	0.038	0.091	0.100
(50, 50)	0.25	1.5	0.000	0.000	0.000	0.000
(50, 50)	0.5	1.25	0.000	0.000	0.002	0.001
(50, 50)	0.75	1	0.051	0.059	0.096	0.108

Table: Simulated level of the bootstrap test for the equivalence of an EMAX and an exponential model.

The d_{∞} bootstrap test- Simulation of power

			$\alpha = 0.05$		lpha= 0.1	
			(σ_1^2, σ_2^2)		(σ_1^2,σ_2^2)	
(n_1, n_2)	δ	d_∞	(0.25, 0.25)	(0.5, 0.5)	(0.25, 0.25)	(0.5, 0.5)
(10, 10)	1	0.75	0.160	0.093	0.297	0.225
(10, 10)	1.5	0.5	0.237	0.133	0.383	0.231
(20, 20)	1	0.75	0.214	0.138	0.393	0.271
(20, 20)	1.5	0.5	0.401	0.229	0.604	0.398
(50, 50)	1	0.75	0.504	0.274	0.662	0.416
(50, 50)	1.5	0.5	0.777	0.491	0.877	0.648
(100, 100)	1	0.75	0.798	0.522	0.878	0.667
(100, 100)	1.5	0.5	0.951	0.767	0.988	0.877

Table: Simulated power of the bootstrap test for the equivalence of an EMAX and an exponential model

A Case Study- the IBS data set

- Biesheuvel, E. and Hothorn, L. A. : Female and male patients with Irritable Bowel Syndrome (IBS), n = 369
- randomized to one of the five doses 0 (placebo), 1, 2, 3, and 4
- larger values corresponding to a better treatment effect
- fitted models
 - male: $m_1(x, \beta_1) = 0.398 + 0.043x$
 - female: $m_2(x, \beta_2) = 0.220 + 0.517 \frac{x}{1.396+x}$
- maximum distance: 0.1784

A Case Study- the IBS data set II

Figure: Left panel: Fitted dose response curves for male (linear model) and female (Emax model) patients. Right panel: p-values of the d_{∞} - bootstrap test for different values of the threshold ϵ_{∞} .

• the p-value corresponding to the choice $\epsilon_{\infty} = 0.35$ is given by 0.078

• Two powerful tests have been proposed by

- estimating the distance and the variance of the test statistic directly (asymptotic approach)
- generating quantiles by a parametric bootstrap
- the bootstrap approach can be applied to any metric without deriving the asympotic distribution
- ullet the bootstrap d_∞ -test was implemented in the R package TestingSimilarity
- we investigated the performance of all tests under the assumption of model misspecification and observed a robust performance
- the proposed tests were adapted to
 - the case of multiple curve comparison
 - dependent data
 - models with common parameters
- especially the adaption to dependent data offers a variety of new applications, e.g. the demonstration of bioequivalence

- Two powerful tests have been proposed by
 - estimating the distance and the variance of the test statistic directly (asymptotic approach)
 - generating quantiles by a parametric bootstrap
- the bootstrap approach can be applied to any metric without deriving the asympotic distribution
- ullet the bootstrap d_∞ -test was implemented in the R package TestingSimilarity
- we investigated the performance of all tests under the assumption of model misspecification and observed a robust performance
- the proposed tests were adapted to
 - the case of multiple curve comparison
 - dependent data
 - models with common parameters
- especially the adaption to dependent data offers a variety of new applications, e.g. the demonstration of bioequivalence

- Two powerful tests have been proposed by
 - estimating the distance and the variance of the test statistic directly (asymptotic approach)
 - generating quantiles by a parametric bootstrap
- the bootstrap approach can be applied to any metric without deriving the asympotic distribution
- ullet the bootstrap d_∞ -test was implemented in the R package TestingSimilarity
- we investigated the performance of all tests under the assumption of model misspecification and observed a robust performance
- the proposed tests were adapted to
 - the case of multiple curve comparison
 - dependent data
 - models with common parameters
- especially the adaption to dependent data offers a variety of new applications, e.g. the demonstration of bioequivalence

- Two powerful tests have been proposed by
 - estimating the distance and the variance of the test statistic directly (asymptotic approach)
 - generating quantiles by a parametric bootstrap
- the bootstrap approach can be applied to any metric without deriving the asympotic distribution
- ullet the bootstrap d_∞ -test was implemented in the R package TestingSimilarity
- we investigated the performance of all tests under the assumption of model misspecification and observed a robust performance
- the proposed tests were adapted to
 - the case of multiple curve comparison
 - dependent data
 - models with common parameters
- especially the adaption to dependent data offers a variety of new applications, e.g. the demonstration of bioequivalence

Figure: Comparison of concentration profiles.

16 / 17

Acknowledgments

Thank you very much!

The research is embedded in the IDeAI EU-FP7 project, Grant-Agreement No. 602 552

References:

- Biesheuvel, E. and Hothorn, L. A. (2002). Many-to-one comparisons in stratified designs, Biometrical Journal, 44, 101–116
- Bjoern Bornkamp, Jose Pinheiro and Frank Bretz (2010) DoseFinding: Planning and Analyzing Dose Finding experiments. R package version 0.1-1. Available at http://cran.r-project.org/web/packages/DoseFinding/index.html
- Moellenhoff, K. (2015) TestingSimilarity: Bootstrap Test for Similarity of Dose Response Curves Concerning the Maximum Absolute Deviation. R package version 1.0, available at http://cran.r-project.org/web/packages/TestingSimilarity/index.html