How to use randomizeR to investigate randomization tests in the presence of selection bias

Diane Uschner
joint work with David Schindler

RWTH Aachen University

October 28, 2015

Acknowledgment

This research is part of the IDeAl project which has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under Grant Agreement no 602552.
Please visit

> http://www.ideal.rwth-aachen.de/
to get the latest news.

Table of Contents

1. Randomization with randomizeR
2. Randomization tests in the presence of selection bias
3. References

Table of Contents

1. Randomization with randomizeR
2. Randomization tests in the presence of selection bias
3. References

Introduction

Controlled Clinical Trial

Experiment designed to determine whether the new treatment has a beneficial effect by comparing the patients receiving it with a group of patients receiving a control treatment.

- Experimental and control group must be comparable.

Randomization is used to balance the variability of patients between treatment groups.

Allocation of patients to treatment groups

Randomization?

DR. STEPHEN'S UNDERSTANDING OF RANDOMISATION WASNT QUITE UP TO SCRATCH ...

FP7 HEALTH 2013-602552

Motivation

Which randomization procedure should we use?

Motivation

Which randomization procedure should we use?

 A suitable one!Enable the practitioner to choose a suitable randomization procedure.

Enable the practitioner to choose a suitable randomization procedure.

Suitable Randomization Procedure

Process

1. Identify constraints that impact the validity of the trial.
2. Define issues that measure the constraint.
3. Assess randomization procedures according to the issues.
4. Select appropriate randomization procedure on the basis of the assessment.

Definition of issue

An issue is a criterion for the assessment of randomization procedures that can be measured for each randomization sequence.

Structure of the package

Randomization procedure

Randomization procedure

A randomization procedure \mathcal{M} is a probability distribution on $\Gamma=\{0,1\}^{N} . t \in \Gamma$ is called randomization sequence. \mathcal{M} produces the sequences

$$
\Gamma_{\mathcal{M}}=\left\{t \in \Gamma \mid \mathbb{P}_{\mathcal{M}}(t) \neq 0\right\}
$$

install.packages('randomizeR')

library (randomizeR)
$\mathrm{N}<-8$

Random Allocation Rule

Equally probable final balance sequences:

$$
\mathbb{P}_{R A R}(t)= \begin{cases}\binom{N}{N / 2}^{-1} & \sum_{i=1}^{N}\left(2 \cdot t_{i}-1\right)=0 \\ 0 & \text { else }\end{cases}
$$

Permuted Block Randomization

Equally probable balance sequences that attain balance after each block:

$$
\begin{aligned}
& \mathbb{P}_{P B R}(t)= \begin{cases}\binom{k}{k / 2}^{-N / k} & \sum_{i=1}^{j \cdot k}\left(2 \cdot t_{i}-1\right)=0 \\
0 & \text { else. }\end{cases} \\
& \text { for } j=1, \ldots, N / k . \\
& \mathrm{k}<-4 \text { \#block length } \\
& \mathrm{bc}<-\mathrm{rep}(\mathrm{k}, \mathrm{~N} / \mathrm{k}) \text { \#block constellation } \\
& \operatorname{pbrPar}(\mathrm{bc})
\end{aligned}
$$

Big Stick Design

Equally probable final balance sequences:

$$
\mathbb{P}_{B S D}(t)= \begin{cases}0.5^{N-d a} & \sum_{i=1}^{N}\left|2 \cdot t_{i}-1\right| \leq b \\ 0 & \text { else }\end{cases}
$$

with imbalance boundary b and number of deterministic allocations $d a:=\left|\left\{j: \sum_{i=1}^{j} t_{i}=b\right\}\right|$.
b <- 2
bsdPar (N, b)

createParam()	Creates a <.>Par object according to user input. createSeq()		
Generates a random sequence according to user in-			
put.		\quad	Generate a random sequence from a <.>Par
:---			
object.			

$\begin{array}{ll}\text { createParam() } & \begin{array}{l}\text { Creates a <.>Par object according to user input. } \\ \text { createSeq() }\end{array} \\ \text { Generates a random sequence according to user in- } \\ \text { put. } \\ \text { GenSeq() } & \begin{array}{l}\text { Generate a random sequence from a }<.>\text { Par }\end{array} \\ \text { object. }\end{array}$

Performance of genSeq

$$
\text { Performance of generating } 10^{\times} \text {RAR sequences, } x \in\{3,4,5,6\} \text {. }
$$

system.time (genSeq(rarPar(100),10~3)) system.time (genSeq(rarPar(100), 10^5))

$$
\begin{array}{rrr}
\text { user } & \text { system } & \text { elapsed } \\
0.06 & 0.00 & 0.06
\end{array}
$$

user system elapsed
$6.16 \quad 0.05 \quad 6.23$
system.time (genSeq (rarPar(100),10^4)) system.time (genSeq(rarPar(100),10^6))

```
user
system elapsed
    0.00 0.71
    user system elapsed
0.70
62.95 0.44 63.48
```


Assessment of Randomization Procedures

Definition

An issue is a criterion for the assessment of randomization procedures that can be measured for each randomization sequence.

Table: Issues implemented in randomizeR
> selBias Represent exact rejection probability (size/ power) in case the responses are influenced by selection bias.
> corGuess Represent the proportion of correct guesses.
> chronBias Represent exact rejection probability (size/ power) in case the responses are influenced by chronological bias.
> setPower Represent the power for a given detectable effect and size.
> imbal Represent the imbalance in allocation numbers.

Model for the responses (unbiased

Response

Let E and C be treatments that influence a continuous outcome Y. For $i=1, \ldots, N$, we write

$$
\begin{equation*}
Y_{i} \sim \mathcal{N}\left(\mu+d \cdot T_{i}, \sigma^{2}\right) \tag{1}
\end{equation*}
$$

where $d \in \mathbb{R}$ denotes the treatment effect, $\mu>0$ the overall mean and $\sigma^{2}>0$ the equal but unknown variance. Y_{i} is called response of patient i. Higher values of Y are regarded as better.

Represent normal endpoints in randomizeR

```
normEndp(mu=c (0,0), sigma=c(1, 1))
```


Hypothesis of no treatment effect

Test Model:

$$
Y_{i} \sim \mathcal{N}\left(\mu+d \cdot T_{i}, \sigma^{2}\right)
$$

Null hypothesis

We test the null hypothesis that the expected effect of the experimental treatment does not differ from the expected effect of the control treatment

$$
H_{0}: d=0
$$

against the two-sided alternative that the expected treatment effects differ

$$
H_{1}: d \neq 0
$$

Test Model:

$$
Y_{i} \sim \mathcal{N}\left(\mu+d \cdot T_{i}, \sigma^{2}\right)
$$

Test the hypothesis under model miss-specification!

True Model:

$$
Y_{i} \sim \mathcal{N}\left(\mu+d \cdot T_{i}+g(\theta, i), \sigma^{2}\right)
$$

Null hypothesis

We test the null hypothesis that the expected effect of the experimental treatment does not differ from the expected effect of the control treatment

$$
H_{0}: d=0
$$

against the two-sided alternative that the expected treatment effects differ

$$
H_{1}: d \neq 0
$$

Selection bias under convergence strategy

Third order selection bias

- Trial is randomized.
- Allocation list is concealed.
- But: the investigator can guess the next treatment assignment due to
- unmasking of past assignments (e.g. due to side effects).
- restrictions of the randomization procedure.
- Investigator can deny enrollment due to soft inclusion criteria.

Berger (2005)

Selection bias under convergence strategy

Third order selection bias

- Trial is randomized.
- Allocation list is concealed.
- But: the investigator can guess the next treatment assignment due to
- unmasking of past assignments (e.g. due to side effects).
- restrictions of the randomization procedure.

- Investigator can deny enrollment due to soft inclusion criteria.

Berger (2005)

Biasing Policy

Selection bias

Choose patient $i+1$ with expected response

$$
E\left(Y_{i+1}\right)= \begin{cases}\mu-\eta & N_{E}(i)>N_{C}(i) \\ \mu & N_{E}(i)=N_{C}(i) \\ \mu+\eta & N_{E}(i)<N_{C}(i)\end{cases}
$$

with selection effect $\eta>0$.

Patient i

Exact rejection probability in case of selection bias

Given the randomization sequence $t \in \Gamma$ and using Student's t-test in order to test the hypothesis $H_{0}: d=0$ of no treatment effect, the test statistic

$$
S=\frac{\sqrt{\frac{N_{E} N_{C}}{N_{E}+N_{C}}}\left(\tilde{y}_{E}-\tilde{y}_{C}\right)}{\frac{1}{N_{E}+N_{C}-2}\left(\sum_{i=1}^{N} t_{i}\left(y_{i}-\tilde{y}_{E}\right)^{2}+\sum_{i=1}^{N}\left(1-t_{i}\right)\left(y_{i}-\tilde{y}_{C}\right)^{2}\right)}
$$

with $\tilde{y}_{E}=\frac{1}{N_{E}} \sum_{i=1}^{N} y_{i} t_{i}, \tilde{y}_{C}=\frac{1}{N_{C}} \sum_{i=1}^{N} y_{i}\left(1-t_{i}\right)$ and $N=N_{E}+N_{C}$ is doubly noncentrally t-distributed with parameters δ and λ.

Exact rejection probability in case of selection bias(2)

The noncentrality parameters can be determined as follows

$$
\begin{aligned}
\delta= & \eta \sqrt{\frac{1}{\sigma^{2} N}} \sum_{i=1}^{N} 2 \cdot\left(t_{i}-\frac{1}{2}\right) \cdot \operatorname{sign}\left(D_{i-1}\right) \\
\lambda= & \frac{\eta^{2}}{\sigma^{2}}\left(\sum_{i=1}^{N} \operatorname{sign}\left(D_{i-1}\right)^{2}-\frac{2}{N}\left(\sum_{i=1}^{N} t_{i} \cdot \operatorname{sign}\left(D_{i-1}\right)\right)^{2}\right. \\
& \left.\quad-\frac{2}{N}\left(\sum_{i=1}^{N}\left(1-t_{i}\right) \cdot \operatorname{sign}\left(D_{i-1}\right)\right)^{2}\right)
\end{aligned}
$$

Langer (2014)

Figure: Doubly noncentral t-distribution, $N=12$

Assess randomization procedure with randomizeR

```
pbr <- getAllSeq(pbrPar(bc))
sb <- selBias("CS",eta = 0.6, method = "exact")
endp <- normEndp(mu=c(0,0), sigma = c(1,1))
assess(pbr, sb, endp = endp)
```


Comparison of randomization procedures

Randomization Procedures

Table of Contents

1. Randomization with randomizeR

2. Randomization tests in the presence of selection bias

Randomization test

Null hypothesis

H_{0} : For each patient i the outcome y_{i} is the same disregarding of the treatment he receives.

1. Observe randomization sequence $t_{o b s}$.
2. Observe the response $y_{o b s}=\left(y_{1}, \ldots, y_{N}\right)$.
\Rightarrow Treat the response as fixed!
3. Calculate the randomization distribution of the test statistic:

$$
\forall t \in \Omega: \text { Compute } \quad S\left(t, y_{o b s}\right) \text {. }
$$

4. Then the p-value is $p=\sum_{t \in \Omega} \mathbb{P}_{\mathcal{M}}(t) \cdot I\left(\left|S\left(t, y_{o b s}\right)\right| \geq\left|S\left(t_{o b s}, y_{o b s}\right)\right|\right)$

Test statistics

- Difference in means test statistic:

$$
S\left(t, y_{o} b s\right)=\sum_{i=1}^{N} y_{i} \cdot\left(2 \cdot t_{i}-1\right)
$$

where y_{i} denotes the responses of the i th patient.

- Logrank test statistic:

$$
S\left(t, y_{o} b s\right)=\sum_{i=1}^{N}\left(a_{i}-\bar{a}\right) \cdot\left(2 \cdot t_{i}-1\right)
$$

where a_{i} denotes the simple rank of the responses.

Model for selection bias

Selection bias

Assume now that the y_{i} are realizations of a random variable:

Convergence strategy

$$
Y_{i} \sim \begin{cases}\mathcal{N}\left(\mu-\eta, \sigma^{2}\right) & D_{i-1}>0 \\ \mathcal{N}\left(\mu, \sigma^{2}\right) & D_{i-1}=0 \\ \mathcal{N}\left(\mu+\eta, \sigma^{2}\right) & D_{i-1}<0\end{cases}
$$

Proschan (1994)
Blackwell and Hodges Jr. (1957)
\rightarrow Investigator wants to assign patients with higher values to the experimental group.

Example: Randomization test for RAR

Ranks of observed response: $y=(1,2,3,4)$, test statistc $S_{t}=\sum_{i=1}^{4} y_{i} \cdot t_{i}-\sum_{i=1}^{4} y_{i} \cdot\left(1-t_{i}\right)$

	t	$\mathbb{P}_{R A R}(t)$	S_{t}	$J_{t}=I\left(\left\|S_{t}\right\| \geq\left\|S_{o b s}\right\|\right)$
1	E E C C	$1 / 6$	-4	1
$*_{2}$	E C E C	$1 / 6$	-2	1
3	C E E C	$1 / 6$	0	0
4	E C C E	$1 / 6$	0	0
5	C E C E	$1 / 6$	2	1
6	C C E E	$1 / 6$	4	1

$$
\Rightarrow p=\sum_{t} \mathbb{P}_{R A R}(t) \cdot J_{t}=4 / 6
$$

Two approach according to sample size

Exact Approach

Use the complete set $\Gamma_{\mathcal{M}}$ of sequences as the reference set Ω !

Omega<-getAllSeq(myPar)

Monte Carlo Approach

Sample L sequences from $\Gamma_{\mathcal{M}}$ and use this sample as the reference set Ω !

Omega<-genSeq(myPar, 1000000)

$$
\text { Figure: }|\Omega|=184,756
$$

Simulations

Effect of selection bias on the test size $(N=12)$

Table: Comparison of size and power of Student's t-test (TT) with the randomization test (RT) using the linear rank test statistic and the exact reference set, nominal significance level $\alpha=0.05$. For the power, we assume a detectable effect $d=d(N, \alpha, \beta)$ of the two-sided \mathbf{t}-test where $\beta=0.8$ denotes the nominal power.

$\eta=0$				$\eta=d / 2$				
	RT		TT		RT		TT	
	size	power	size	power	size	power	size	power
TBD(4)	0.043	0.695	0.053	0.805	0.151	0.894	0.132	0.935
RAR	0.038	0.733	0.049	0.802	0.076	0.856	0.094	0.896
PBR(4)	0.040	0.697	0.048	0.801	0.135	0.898	0.158	0.949
MP(2)	0.041	0.733	0.051	0.803	0.115	0.887	0.128	0.923

Effect of selection bias on the test size $(N=48)$

Table: Comparison of size and power of Student's t-test (TT) with the randomization test (RT) using the linear rank test statistic and a MC reference set of $L=16,000$ sequences, and nominal significance level $\alpha=0.05$. For the power, we assume the detectable effect $d=d(N, \alpha, \beta)$ of the two-sided t -test where $\beta=0.8$ denotes the nominal power.

$\eta=0$				$\eta=d / 2$				
	RT		TT		RT		TT	
	size	power	size	power	size	power	size	power
TBD(4)	0.048	0.768	0.049	0.803	0.163	0.953	0.170	0.965
RAR	0.048	0.769	0.049	0.796	0.060	0.845	0.065	0.886
PBR(4)	0.047	0.772	0.049	0.799	0.193	0.967	0.201	0.970
MP(2)	0.046	0.774	0.051	0.795	0.140	0.947	0.141	0.955

Comparison of RT different test statistics

Table: Comparison of the size of the randomization test using the linear rank test statistic (lr) and the difference of means test statistic (dm) with a MC reference set of $L=16,000$ sequences, and nominal significance level $\alpha=0.05$.

	$\eta=0$		$\eta=d / 2$	
	Ir	dm	Ir	dm
$\operatorname{TBD}(4)$	0.048	0.036	0.163	0.161
RAR	0.048	0.052	0.060	0.069
$\operatorname{PBR}(4)$	0.047	0.056	0.193	0.192
$\operatorname{MP}(2)$	0.046	0.046	0.140	0.143

- randomizeR makes it easy to generate randomization sequences and compute reference sets for the randomization tests.
- The randomization test presented in this talk does not protect against selection bias (it is just as bad as Student's t-test).
- Aim: Develop a new randomization test (reference distribution + test statistic) that is not influenced by selection bias.

Want some more?

Try it yourself! Just type

```
install.packages("randomizeR")
library("randomizeR")
vignette("comparison-example")
```

in your R command line.
Or just talk to me at lunch!

Table of Contents

1. Randomization with randomizeR
2. Randomization tests in the presence of selection bias
3. References

Atkinson, A. C. (2001). The comparison of designs for sequential clinical trials with covariate information. Journal of the Royal Statistical Socitey 165, 349-373.
Berger, V. W. (2005). Selection Bias and Covariate Imbalances in Randomized Clinical Trials. Wiley.
Blackwell, D. and J. L. Hodges Jr. (1957). Design for the control of selection bias. Annals of Mathematical Statistics 25, 449-460.
ICH E9. Statistical principles for clinical trials, 1998. Current version dated 5 Februrary 1998. Last access in September 2014. Available from: http://www.ich.org.
S. Langer. The modified distribution of the t-test statistic under the influence of selection bias based on random allocation rule. Master's thesis, RWTH Aachen, 2014.
Lehmann (1975) Nonparametrics: Statistical Methods Based on Ranks

References II

Lachin, J. M. (1988). Statistical properties of randomization in clinical trials. Controlled Clinical Trials 9, 289-311.
Proschan, M. (1994). Influence of selection bias on type 1 error rate under random permuted block designs Statistica Sinica 4, 219-231.
Rosenberger, W.F., and Lachin, J.M. (2016). Randomization in clinical trials - Theory and practice. Wiley.
Tamm, M., and Hilgers, R.-D. (2014). Chronolgical bias in randomized clinical trials under different types of unobserved time trends Meth. Inf. Med. 6, 501-510.
Schindler, D., and Uschner, D. (2015). randomizeR: Randomization for Clinical Trials R package version 1.0.

