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Abstract
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Pharmacometric model-based analysis using nonlinear mixed-effects models (NLMEM) has to
date mainly been applied to learning activities in drug development. However, such analyses
can also serve as the primary analysis in confirmatory studies, which is expected to bring higher
power than traditional analysis methods, among other advantages. Because of the high expertise
in designing and interpreting confirmatory studies with other types of analyses and because
of a number of unresolved uncertainties regarding the magnitude of potential gains and risks,
pharmacometric analyses are traditionally not used as primary analysis in confirmatory trials.

The aim of this thesis was to address current hurdles hampering the use of pharmacometric
model-based analysis in confirmatory settings by developing strategies to increase model
compliance to distributional assumptions regarding the residual error, to improve the
quantification of parameter uncertainty and to enable model prespecification.

A dynamic transform-both-sides approach capable of handling skewed and/or heteroscedastic
residuals and a t-distribution approach allowing for symmetric heavy tails were developed and
proved relevant tools to increase model compliance to distributional assumptions regarding the
residual error. A diagnostic capable of assessing the appropriateness of parameter uncertainty
distributions was developed, showing that currently used uncertainty methods such as bootstrap
have limitations for NLMEM. A method based on sampling importance resampling (SIR)
was thus proposed, which could provide parameter uncertainty in many situations where
other methods fail such as with small datasets, highly nonlinear models or meta-analysis. SIR
was successfully applied to predict the uncertainty in human plasma concentrations for the
antibiotic colistin and its prodrug colistin methanesulfonate based on an interspecies whole-body
physiologically based pharmacokinetic model. Lastly, strategies based on model-averaging
were proposed to enable full model prespecification and proved to be valid alternatives to
standard methodologies for studies assessing the QT prolongation potential of a drug and for
phase III trials in rheumatoid arthritis.

In conclusion, improved methods for handling residual error, parameter uncertainty and
model uncertainty in NLMEM were successfully developed. As confirmatory trials are among
the most demanding in terms of patient-participation, cost and time in drug development,
allowing (some of) these trials to be analyzed with pharmacometric model-based methods will
help improve the safety and efficiency of drug development.
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Sustaining doubt is harder work than sliding into certainty. 

Daniel Kahneman 
  

To my father, the warrior 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
The cover artwork „Principiis obsta!“ (“Resist the beginnings!”) by Thorsten 
Schiffer is inspired by Jackson Pollock’s drip paintings. “It portrays the evolution 
and result of an idea rooted in disorder as inevitable lawlessness. The tangled lines 
with no apparent start or end emphasize the bootstrapping aspect of unclear con-
cepts. Observing plots of pharmacometric models from a distance reminded me at 
times of the beauty of clear hypotheses and design.” (T. Schiffer) 



 

List of Papers 

This thesis is based on the following papers, which are referred to in the text 
by their Roman numerals. 

I. Dosne AG, Bergstrand M, Karlsson MO. (2016) A Strategy For Residual 
Error Modeling Incorporating Scedasticity Of Variance And Distribution 
Shape. J Pharmacokinet Pharmacodyn 43(2):137-51. 

II. Dosne AG*, Niebecker R*, Karlsson MO. (2016) dOFV Distributions: A 
New Diagnostic For The Adequacy Of Parameter Uncertainty In Nonlinear 
Mixed-Effects Models Applied To The Bootstrap. J Pharmacokinet Phar-
macodyn DOI: 10.1007/s10928-016-9487-8. 

III. Dosne AG, Bergstrand M, Harling K, Karlsson MO. (2016) Improving The 
Estimation Of Parameter Uncertainty Distributions In Nonlinear Mixed Ef-
fects Models Using Sampling Importance Resampling. J Pharmacokinet 
Pharmacodyn DOI :10.1007/s10928-016-9496-7. 

IV. Dosne AG, Bergstrand M, Karlsson MO. An Automated Sampling Im-
portance Resampling Procedure For Estimating Parameter Uncertainty 
[Submitted] 

V. Bouchene S, Dosne AG, Marchand S, Friberg LE, Björkman S, Couet W, 
Karlsson MO. Development Of An Interspecies Whole-Body Physiologi-
cally Based Pharmacokinetic Model For Colistin And Colistin Methanesul-
fonate In Five Animal Species And Evaluation Of Its Predictive Ability In 
Human [In manuscript] 

VI. Dosne AG, Bergstrand M, Karlsson MO, Renard D, Heimann G. Model-
Averaging For Robust Assessment Of QT Prolongation By Concentration-
Response Analysis [Submitted] 

VII. Dosne AG, Bieth B, Bergstrand M, Karlsson MO, Renard D. Longitudinal 
Data Analysis Using Model-Averaging: Benefits For Pivotal Clinical Tri-
als, Applied To Rheumatoid Arthritis [In manuscript] 

Reprints were made with permission from the respective publishers. 

*The authors contributed equally to this work  



 

  



 

Contents 

Introduction ................................................................................................... 11 
Decision-making in clinical drug development ........................................ 11 
Established role of pharmacometrics for learning activities .................... 13 
Potential role of pharmacometrics for confirming activities .................... 14 
Principle of hypothesis testing ................................................................. 16 
Analysis models ....................................................................................... 18 

Cross-sectional models ........................................................................ 18 
Longitudinal models ............................................................................ 18 

Hurdles to the use of pharmacometric models for decision-making ........ 21 
Distributional assumptions regarding the residual error ...................... 21 
Distributional assumptions regarding parameter uncertainty .............. 22 
Need for model prespecification .......................................................... 22 

Aims .............................................................................................................. 23 

Methods ........................................................................................................ 24 
Residual error modeling ........................................................................... 24 

Commonly used models ...................................................................... 24 
Proposed error models: dTBS and the t-distribution ........................... 25 
Evaluation of the new error models on real data examples ................. 27 
Evaluation of the new error models on simulated examples ............... 28 

Parameter uncertainty ............................................................................... 29 
Commonly used methods .................................................................... 29 
The dOFV diagnostic: assessing uncertainty adequacy ....................... 31 
Evaluation of bootstrap adequacy in NLMEM .................................... 33 
SIR: improving parameter uncertainty estimation ............................... 34 
Evaluation of the 1-step SIR on simulated data ................................... 38 
Evaluation of the 1-step SIR on real data ............................................ 38 
Evaluation of the 5-step SIR on real data ............................................ 39 
Application of SIR for decision-making using a WBPBPK model ..... 40 

Model prespecification ............................................................................. 42 
Principle of model-averaging .............................................................. 42 
Model-averaged test for QT prolongation assessment ........................ 42 
Model-averaged test for rheumatoid arthritis trials ............................. 45 

Software ................................................................................................... 47 
 



 

Results ........................................................................................................... 49 
Residual error modeling ........................................................................... 49 

Performance of dTBS on real data examples ....................................... 49 
Performance of the t-distribution on real data examples ..................... 52 
Simulation results ................................................................................ 53 

Parameter uncertainty ............................................................................... 53 
Performance of the dOFV uncertainty diagnostic ............................... 53 
Evaluation of bootstrap adequacy in NLMEM .................................... 53 
Performance of the 1-step SIR on simulated data ................................ 56 
Performance of the 1-step SIR on real data ......................................... 56 
Performance of the 5-step SIR on real data ......................................... 58 
Performance of SIR for decision-making using a WBPBPK model ... 60 

Model prespecification ............................................................................. 62 
Model-averaged test for QT prolongation assessment ........................ 62 
Model-averaged test for rheumatoid arthritis trials ............................. 64 

Discussion ..................................................................................................... 67 
Residual error modeling ........................................................................... 67 

Assessing improvement on the error model level ................................ 68 
dTBS specificities ................................................................................ 69 
t-distribution specificities .................................................................... 69 

Parameter uncertainty ............................................................................... 70 
Performance of the dOFV uncertainty diagnostic ............................... 70 
Evaluation of bootstrap adequacy in NLMEM .................................... 70 
Performance of the 1-step SIR on simulated data ................................ 72 
Performance of the 1-step SIR on real data ......................................... 73 
Performance of the 5-step SIR on real data ......................................... 74 
Performance of SIR for decision-making using a WBPBPK model ... 75 

Model prespecification ............................................................................. 76 
Model-averaged test for QT prolongation assessment ........................ 76 
Model-averaged test for rheumatoid arthritis trials ............................. 77 

Conclusion .................................................................................................... 80 

Acknowledgments......................................................................................... 81 

References ..................................................................................................... 84 

 



 

Abbreviations 

  
ACR American College of Rheumatology 
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AN(C)OVA Analysis of (Co)Variance 
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BIC Bayesian Information Criterion 
CI Confidence Interval 
CL Clearance 
Cmax Maximum Concentration 
CMS Colistin Methanesulfonate 
CWRES Conditional Weighted Residuals 
dOFV Delta Objective Function Value 
dTBS dynamic Transform-Both-Sides 
E0 Baseline 
EC50 Concentration leading to half the maximum Effect 
ED50 Dose leading to half the maximum Effect 
EMA European Medicines Agency 
EMAX Maximum Effect 
FDA Food and Drug Administration 
FIM Fisher Information Matrix 
FO First-Order (estimation) 
FOCE(I) First-Order Conditional Estimation (with Interaction) 
H0, H1 Null and Alternative Hypotheses 
IIV Inter-Individual Variability 
IOV Inter-Occasion Variability 
IWRES Individual Weighted Residuals 
KA Absorption rate 
Kp Tissue-to-plasma partition coefficient 
LAPLACE Laplacian (estimation)  
(L)L (Log-)Likelihood 
LLP Log-Likelihood Profiling 
MCP-Mod Multiple Comparison Procedure - Modelling 
MID3 Model-Informed Drug Discovery and Development 
MISE Mean Integrated Square Error 



 

NLME(M) Nonlinear Mixed Effects (Models) 
NPDE Normalized Prediction Distribution Error 
OFV Objective Function Value 
OFVi Individual Objective Function Value 
PD Pharmacodynamic(s) 
PDF Probability Density Function 
PK Pharmacokinetic(s) 
PsN Perl-speaks-NONMEM 
QTc corrected QT interval 
(R)SE (Relative) Standard Error(s) 
RUV Residual Unexplained Variability 
(SA)EM (Stochastic Approximation) Expectation Maximization 
SIR Sampling Importance Resampling 
SSE Stochastic Simulations and Estimations 
TLAG Lag-Time 
TQT Thorough-QT 
V Volume 
VPC Visual Predictive Check 
WBPBPK Whole-Body Physiologically Based Pharmacokinetic 
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Introduction 

Decision-making in clinical drug development  
Drug development can be defined as the process of finding a dose regimen at 
which a candidate drug is safe and effective at treating subjects suffering 
from a given condition. Drug development is typically divided into pre-
clinical and clinical development. Preclinical development aims at determin-
ing the efficacy and safety of the candidate drug based on in vitro assays and 
in vivo experiments in various animal species. Clinical development pursues 
the same goal based on studies performed in human, healthy volunteers or 
patients. Clinical development is further subdivided into three more or less 
consecutive phases. Phase I corresponds to the first time the candidate drug 
is administrated to humans, typically healthy volunteers, and mainly focuses 
on safety and tolerability. Phase II involves a limited number of patients and 
aims at establishing the “proof-of-concept”, i.e. a first indication of efficacy, 
as well as at selecting a suitable dosing regimen. Phase III involves a high 
number of patients and constitutes the pivotal confirmation of a positive 
benefit/risk ratio, which will lead if successful to an application for market 
authorization to health authorities. Figure 1 presents a schematic of clinical 
drug development and the associated decision-making processes at the dif-
ferent milestones. 

 
Figure 1. Schematic of clinical drug development and associated decision-making 
processes. PoC: proof-of-concept, PhIII: Phase III, MA: marketing authorization. 
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Confirmatory decisions are made at two main points during clinical drug 
development. These decisions are taken by different stakeholders and bear 
different consequences. The first confirmatory decision point is the Phase II 
proof-of-concept trial, which is a major driver of the sponsor’s decision of 
whether or not to pursue the compound’s development (“go/no go”). The 
second confirmatory decision point is the Phase III efficacy trial, which is a 
key element when regulatory bodies decide whether or not to approve the 
drug. Exploratory decision-making also happens at other points along clini-
cal drug development, for example when selecting which dose regimens to 
move forward or which drug formulation to use. Clinical trials may differ in 
a number of ways depending on whether they are confirmatory or explorato-
ry. Confirmatory trials provide firm evidence of efficacy or safety by testing 
predefined hypotheses with predefined methods1. Examples of confirmatory 
trials are the Phase III efficacy studies. Exploratory trials on the other hand 
have specific objectives which should increase the knowledge on the com-
pound, but do not necessarily require strict hypothesis testing. Examples of 
exploratory trials are the Phase I single ascending dose studies. Note that a 
trial may have both confirmatory and exploratory aspects. This is for exam-
ple often the case for Phase II dose finding studies, where both the presence 
of a dose-response is confirmed and a suitable target dose for Phase II is 
explored. 

The concept of confirmatory and exploratory trials is mirrored in the 
learning versus confirming paradigm2 established by Lewis Sheiner in 1997. 
This paradigm lays out differences in the aim, design and analysis of studies 
designed for learning and those of studies designed for confirming. A sum-
mary of the main distinctions is provided in Table 1. Confirmatory settings 
are usually characterized by a single question to be answered by “yes” or 
“no”, typically within a single study referred to as confirmatory or pivotal 
trial. Examples of such questions are: does the drug show efficacy in select-
ed patients? Does the drug demonstrate an acceptable benefit/risk ratio in a 
large patient population? Is the new formulation equivalent to the old formu-
lation? Is dose adjustment needed in some populations? The analysis of con-
firmatory trials is based on hypothesis testing. Answering the given question 
with high certainty, in particular making sure that the risk of false positives 
is controlled, is considered of major importance. Learning settings can ad-
dress multiple questions which are answered by quantitative metrics, possi-
bly resulting from pooled data. Examples of such questions are: what is the 
tolerated dose in healthy volunteers? What is the dose-response in selected 
patients and which doses should be carried on to the next phase? What is the 
probability of success of the next trial? How should the dose be adapted for 
particular populations? Analysis tools in learning settings are aimed at quan-
tifying one or more metrics of interest which can then be used to generate 
hypotheses. With the specifics of confirming and learning activities now 
outlined, the question arises of which analysis tools to use for which activity. 
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Table 1. Differences between learning and confirming activities 
Characteristic Learning Confirming 
Aim Hypothesis generation Hypothesis testing 
Type of answer Quantitative 

Multiple endpoints 
Binary yes/no 
Single endpoint 

Evidenced used Pooled studies 
Prior information 

Single study  
(possibly replicated) 

Study design More flexible 
Can be unbalanced 

Highly controlled 
Balanced 

Analysis method Principles prespecified, 
but can be data driven 

All details prespecified 

Aversion to risk Low/moderate High 

Established role of pharmacometrics for learning activities 
Pharmacometrics, which is a key discipline of the Model-Informed Drug 
Discovery and Development (MID3) framework3, has been traditionally 
applied for learning activities. MID3 has been introduced recently as a 
“quantitative framework for prediction and extrapolation, centered on 
knowledge and inference generated from integrated models of compound, 
mechanism and disease level data and aimed at improving the quality, effi-
ciency and cost effectiveness of decision making”. It followed up on the 
previously used term of model-based drug development. Model-based ap-
proaches have long been recognized as relevant tools to increase the produc-
tivity and sustainability of drug development4-6. Pharmacometrics itself has 
been defined as “the science of developing and applying mathematical and 
statistical methods to (a) characterize, understand and predict a drug’s phar-
macokinetic and pharmacodynamic behavior; (b) quantify uncertainty of 
information about that behavior; and (c) rationalize data-driven decision 
making in the drug development process and pharmacotherapy”7. 

Pharmacometrics is used for an array of learning activities. For example, 
modeling clinical trial data has made a major impact on dose selection and 
optimization through the establishment of dose-response or exposure-
response relationships. Pharmacometrics has also greatly impacted the de-
sign of clinical trials through the use of clinical trial simulations8, where 
models for placebo responses, disease progression, drug responses, and trial 
execution are developed and integrated in order to predict endpoints such as 
future trial outcomes9. Model-based meta-analysis also proved a valuable 
tool for benchmarking new compounds in their competitive landscape and 
assess how likely it is that they outperform readily available treatments10. 
With the capacity of summarizing, integrating and storing knowledge ac-
quired during the course of drug development, pharmacometrics has contrib-
uted to improve the quality and the importance of learning phases. While 
pharmacometric models should continue to be used for learning purposes, 
their application to confirmatory analyses deserves further attention. 



 14 

Potential role of pharmacometrics for confirming activities 
The use of pharmacometric models based on longitudinal data analysis has 
so far been limited for hypothesis testing in confirmatory settings despite the 
recognition of its scientific merit by regulatory authorities11. The qualifica-
tion by the European Medicines Agency (EMA) of Multiple Comparison 
Procedure - Modelling (MCP-Mod)12 as an efficient statistical methodology 
for the design and analysis of Phase II dose finding studies is a first step 
towards the use of dose-response models in confirmatory settings. Note that 
this methodology combines both confirmatory and exploratory elements, but 
is not based on longitudinal data.  

More generally, a review of 198 submissions to the Food and Drug Ad-
ministration (FDA) over the years 2000 to 200813 showed that 64% and 67% 
of pharmacometric reviews contributed to drug approval and labelling deci-
sions, with about half of them providing pivotal or supportive insights into 
effectiveness and safety. However, model-based primary endpoints were 
only used in 2.5% of cases, and all of them concerned pediatrics settings. 
Only 4.5% of the reviews used model-based analyses to confirm effective-
ness, and in a presented case study the performed exposure-response model-
ing was not used for formal hypothesis testing. This setting is actually a par-
ticularity of drug approvals by the FDA, which more often than its European 
counterpart demands evidence from two pivotal Phase III trials14. The bene-
fit of pharmacometrics to obviate the need for a second trial, without neces-
sarily being used as a primary analysis, has been recognized previously15. 

The shift to longitudinal model-based analysis for the purpose of confir-
mation is expected to bring a number of advantages. Pharmacometric model-
based analysis is likely to achieve higher power than traditional analysis, 
thus enabling to reduce the number of patients needed in clinical trials. This 
is to relate to the fact that modeling exploits the complete longitudinal data 
instead of a cross-sectional fraction of it, thus increasing the signal to noise 
ratio. The power gain could be substantial in many therapeutic areas and lead 
to much smaller studies. For example, a two-arm proof-of-concept Phase II 
analysis in the stroke indication would require a total of 90 patients for 80% 
power to detect a drug effect different from 0 using a pharmacometric mod-
el-based analysis versus 388 patients using a two-sided t-test, resulting in a  
4.3-fold difference in study size16. Power gains could be even higher when 
model-based endpoints associated with low inter-individual variability and 
precise quantification assays can be used17. Furthermore, inferential assess-
ment of endpoints such as disease progression, which are expected to be 
increasingly used in various therapeutic areas, will require longitudinal ap-
proaches11. Overall, analyzing smaller studies with pharmacometric model-
based approaches would achieve satisfactory power and thus decrease the 
number of patients exposed to an experimental drug as well as reallocate 
savings in both costs and time to the development pipeline.  
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Pharmacometric model-based confirmatory analyses are also particularly 
useful when traditional analyses are not feasible due to practical limitations 
in sample size (or more generally in available information) or due to con-
straints in study design. Limitations in sample size are often observed in 
small population groups such as pediatrics18 or personalized medicine set-
tings19, for which traditional methods would often lead to inconclusive stud-
ies due to lack of power. Development of new methods including pharma-
cometric model-based approaches for the design and analysis of trials in 
small population groups is currently the focus of a European Consortium20. 
Traditional analysis can also be difficult when the amount of collectable data 
is limited, rendering the metric of interest not assessable at the individual 
level or within a single study. This has been observed for example when 
assessing whether covariates significantly influence the pharmacokinetic 
(PK) profile of a drug, summarized by the area under the curve (AUC) and 
the maximum concentration (Cmax), in order to detect a potential need for 
dose adjustment21. Detection of influential covariates is best done in Phase 
III studies, as they provide a high enough power and represent a large sam-
ple of the target population. Sampling of drug concentrations during such 
studies is typically sparse and does not enable to calculate individual AUC 
or Cmax using traditional non-compartmental analysis. Alternative pharma-
cometric methods such as compartmental population PK analysis can then be 
used to estimate individual AUC or Cmax. Another example where tradi-
tional analysis methods have limitations is therapeutic protein-drug interac-
tion studies, which could benefit from pooling relevant data from multiple 
studies. Dedicated studies may be logistically cumbersome for such com-
pounds, as they typically need to be performed in the patient population due 
to disease-specific PK profiles and require parallel designs due to long ter-
minal half-lives22. Population PK could also address issues faced by thera-
peutic protein-drug interactions. 

Lastly, particularities in study design can also present hurdles for tradi-
tional analyses. For example, adaptive designs, for which study design can 
be modified and improved in a pre-planned manner at interim time points 
during the study, and seamless designs, which combine in a single study 
goals that are typically addressed in different trials, have been advocated to 
enhance clinical development23. Dealing with such flexible designs is not 
always straightforward with traditional analyses. As such designs are likely 
to be more commonplace in the future, pharmacometric model-based analy-
sis methods would be a natural match for this evolution. 
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Principle of hypothesis testing  
To understand the advantages and drawbacks of pharmacometric models in 
confirmatory settings, the principles of hypothesis testing need to be speci-
fied. A hypothesis test can be defined as a decision rule which uses statistical 
models and observed data to decide which of usually two mutually exclusive 
hypotheses is true for a population, based on a sample. In the clinical context 
the population typically corresponds to all patients to be treated, and the 
sample to all subjects included in the clinical trial. Hypothesis testing can be 
summarized in four steps:  

 
1. Define the hypotheses to test H0 (the null hypothesis) and H1 (the alter-

native hypothesis). For example, in the case of testing if a difference ex-
ists between the new treatment and the standard of care, H0 and H1 
would be expressed as: 
𝐻𝐻0: 𝜓𝜓(𝛩𝛩)  = 0 
𝐻𝐻1: 𝜓𝜓(𝛩𝛩)  ≠ 0 

where 𝜓𝜓(𝛩𝛩) is the difference between the two treatments expressed as a 
function of model parameters 𝛩𝛩. H0 is generally set as the hypothesis one 
wants to reject. 

 
2. Identify a test statistic which distribution is known if H0 is true. For ex-

ample, in the previous case of testing a difference between two treat-
ments, the Student statistic Tsample (Eq. 2) is known to follow a Student’s 
t-distribution with n - 1 degrees of freedom if 𝜓𝜓(𝛩𝛩) is normally distribut-
ed.  

𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  =
𝜓𝜓�(𝛩𝛩�) 
�̂�𝑆

√𝑛𝑛 − 1    
Eq. 2 

where 𝜓𝜓�(𝛩𝛩�) is the estimate of 𝜓𝜓(𝛩𝛩) in the sample, �̂�𝑆 its variance and n 
the sample size. Note that the test statistic can also be the endpoint 
 𝜓𝜓(𝛩𝛩)  itself. 

 
3. Calculate the test statistic for the data at hand and derive the probability, 

also called p-value, that a test statistic greater or equal to the one ob-
served would be obtained if H0 were true. In our example the p-value 
would equal: 

𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = � 𝑃𝑃𝑃𝑃𝑃𝑃(𝑇𝑇|𝐻𝐻0)𝑑𝑑𝑇𝑇
𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

−∞
 

Eq. 3 

where PDF(Tsample|H0) is the probability density function (PDF) of the 
test statistic if H0 is true, in this case the PDF of the Student’s t-
distribution. If the test statistic is the endpoint itself, its confidence inter-
val (CI) at a predefined significance level α is computed. 

Eq. 1 
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4. Compare the p-value to a predefined significance level α: if it is lower, 
H0 is rejected. In our example, one would test whether: 
𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ≤ 𝛼𝛼 = ∫ 𝑃𝑃𝑃𝑃𝑃𝑃(𝑇𝑇|𝐻𝐻0)𝑑𝑑𝑇𝑇𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

−∞   Eq. 4 

where Tcritic is the cut-off value defined by the significance level α in the 
distribution of T. When the test statistic is the endpoint itself, H0 would 
be rejected if the CI at the α significance level contains the value defin-
ing the hypotheses (e.g. 0 in Eq. 1). 

A summary of the hypothesis testing process is provided in Figure 2. 
 

 
 
 
 
 
 
 
 

 
 

Figure 2. The principle of hypothesis testing. α and β are the type I and II errors 
which will be defined below. 

Decisions made based on a hypothesis test can be correct or incorrect. The 
decision will be correct in two cases: if H0 is true and H0 is not rejected; and 
if H1 is true and H0 is rejected. Oppositely, the decision will be incorrect if 
H0 is true and H0 is rejected; and if H1 is true and H0 is not rejected. The 
risks associated with making wrong decisions are called type I and type II 
errors depending on which hypothesis is true (Table 2). These risks need to 
be managed for a hypothesis test to be accepted as a means of drawing infer-
ence, i.e. making a conclusion, with regards to the efficacy or safety of a 
new drug. The type I error α is the error of major concern for regulatory 
agencies, as it corresponds to “worst case scenarios” such as falsely declar-
ing a new compound superior to the standard of care, or falsely declaring a 
generic compound equivalent to the brand name drug. The type I error is 
equal to the significance level during hypothesis testing, and is mitigated by 
being set to a small value (e.g. 0.05, meaning that superiority will falsely be 
concluded at maximum in 5% of cases). Note that the type I risk is only con-
trolled if the assumptions underlying the model used for the test are valid. 
The type II error β is a concern of the sponsor, and is more commonly used 
as 1- β, which is referred to as power. To mitigate type II error, the power is 
set to a high value (e.g. 0.80, meaning that H0 will be correctly rejected in 
80% of cases for a specific H1). The power conditions the number of patients 
who need to be recruited for a trial. 

State hypotheses 𝐻𝐻0 and 𝐻𝐻1 

Calculate 𝑻𝑻𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 and the corresponding 
𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔  

Establish test statistic 𝑇𝑇 with known 
distribution when 𝐻𝐻0 true 

Reject 𝐻𝐻0 when 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 ≤ 𝛼𝛼 

Reject 𝑯𝑯𝟎𝟎 𝑯𝑯𝟎𝟎 Do not reject 𝑯𝑯𝟎𝟎 
PDF 

T 

𝟏𝟏 − 𝜷𝜷

𝑯𝑯𝟎𝟎 𝑯𝑯𝟏𝟏 

𝟏𝟏 − 𝜷𝜷 
𝜶𝜶 
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Table 2. Correct and incorrect inferences based on hypothesis testing 

 Reject H0 Do not reject H0 

H0 true Incorrect decision 
Type I error α Correct decision 

H1 true Correct decision 
Power 1- β 

Incorrect decision 
Type II error β 

Analysis models  
Cross-sectional models  
Cross-sectional models, which typically describe the distribution of an aver-
age endpoint at a specific time point, have been mostly used so far in con-
firmatory settings. They provide good type I error control but moderate 
power, which can be linked to the fact that they make few assumptions about 
the endpoint and use only part of the trial data. An example of a cross-
sectional model for a given endpoint 𝑦𝑦 at a chosen time would be a normal 
distribution N with mean μ and standard deviation σ.  
𝑦𝑦 = µ +  𝜀𝜀 
ε~𝑁𝑁(0,σ2) Eq. 5 

Such a model can for example be used for the endpoint of the mean decrease 
in blood pressure in a population at the end of a clinical trial. The main as-
sumption in cross-sectional models typically pertains the distribution of the 
endpoint at a particular time point. 

Model parameters can be directly estimated from the data using the for-
mulas for means and variances, or using least squares estimation methods if 
regression elements are included in the model.  

A test statistic can then be derived from the endpoint model and subse-
quently be used for hypothesis testing. The distributions of test statistics are 
often well known under certain assumptions such as independence between 
measurements and large enough sample sizes. Examples of hypothesis tests 
based on cross-sectional models include Student’s t-test, which tests whether 
the means of two sets of data are significantly different from each other, 
analysis of variance (ANOVA), which is an extension of the t-test to more 
than two groups, and analysis of covariance (ANCOVA), which enables to 
add linear regression components such as covariates into ANOVA.  

 
Longitudinal models 
Longitudinal mixed effects models, also referred to as pharmacometric mod-
els herein, typically describe the distribution of individual endpoints over the 
full time course of the study, and could improve the power of hypothesis 
tests by utilizing additional study information. However, the increased num-
ber of assumptions raises regulatory concerns towards a lack of type I con-
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trol. An example of a longitudinal model for a given endpoint would be a 
function of one or more explanatory variables such as time. A common fami-
ly of longitudinal models is nonlinear mixed effect models (NLMEM). For 
continuous data, such a model can be expressed as: 
𝑦𝑦𝑖𝑖𝑖𝑖 = 𝑓𝑓�𝑡𝑡𝑖𝑖𝑖𝑖 ,𝜃𝜃𝑖𝑖 , 𝑧𝑧𝑖𝑖𝑖𝑖� + 𝑔𝑔�𝑓𝑓�𝑡𝑡𝑖𝑖𝑖𝑖 ,𝜃𝜃𝑖𝑖 , 𝑧𝑧𝑖𝑖𝑖𝑖�, 𝜀𝜀𝑖𝑖𝑖𝑖� 
𝜃𝜃𝑖𝑖 = ℎ(𝜃𝜃, 𝜂𝜂𝑖𝑖) 
𝜂𝜂𝑖𝑖~𝑁𝑁(0,𝛺𝛺) 
𝜀𝜀𝑖𝑖𝑖𝑖~𝑁𝑁(0,𝛴𝛴) 

Eq. 6 

where yij is the observation of individual i at time j and 𝑓𝑓(∙) is the structural 
model depending on time tij, on the vector of individual parameters 𝜃𝜃𝑖𝑖 and on 
the vector of individual covariates zij. 𝑔𝑔(∙) is the residual error function with 
residuals εij. Individual parameters are obtained from the population fixed 
effects parameters 𝜃𝜃 and individual random effects 𝜂𝜂𝑖𝑖 via a function ℎ(∙) 
which is typically additive or exponential. The 𝜂𝜂𝑖𝑖 and εij are assumed normal-
ly distributed with mean 0 and variance-covariance matrices 𝛺𝛺 and 𝛴𝛴, respec-
tively. They are independent between individuals as well as between each 
other. For discrete data, the model can be expressed as: 
𝑝𝑝(𝑦𝑦𝑖𝑖𝑖𝑖 = x) = 𝑙𝑙�𝑡𝑡𝑖𝑖𝑖𝑖 ,𝜃𝜃𝑖𝑖 , 𝑧𝑧𝑖𝑖𝑖𝑖� Eq. 7 

where p is the probability of observing x given the probability density func-
tion 𝑙𝑙(∙). Assumptions in longitudinal models pertain the structural model 
and the distributions of the random effects and the residual variability. The 
validity of these assumptions can be checked by inspecting distribution plots 
of random effects and residuals, simulation-based diagnostics such as Visual 
Predictive Checks (VPC), and other metrics. 

Model parameters 𝛩𝛩 = (𝜃𝜃,𝛺𝛺,𝛴𝛴) are estimated using maximum likelihood, 
which aims at finding the parameter values which maximize the likelihood 
of observing the sample data given the parameters. In NLMEM, the likeli-
hood of the full set of data is equal to the product of the likelihoods of the 
data of each individual. For ease of computation, the individual likelihood 
can be obtained on the log scale by integrating over the random effects:  

LL𝑖𝑖(y𝑖𝑖|𝛩𝛩) = log� 𝑝𝑝(y𝑖𝑖 , 𝜂𝜂𝑖𝑖;𝛩𝛩)𝑑𝑑
∞

−∞
𝜂𝜂𝑖𝑖 = log� 𝑢𝑢(y𝑖𝑖|𝜂𝜂𝑖𝑖;𝛩𝛩)𝑣𝑣(𝜂𝜂𝑖𝑖;𝛩𝛩)𝑑𝑑

∞

−∞
𝜂𝜂𝑖𝑖 Eq. 8 

where LL𝑖𝑖(y𝑖𝑖|𝛩𝛩) is the log-likelihood of the observed data from one individu-
al, 𝑝𝑝(y𝑖𝑖 , 𝜂𝜂𝑖𝑖;𝛩𝛩) is the likelihood of the complete data (y𝑖𝑖 , 𝜂𝜂𝑖𝑖) of subject i, 
𝑢𝑢(y𝑖𝑖|𝜂𝜂𝑖𝑖;𝛩𝛩) is the conditional density of the observations given the individual 
random effects, and 𝑣𝑣(𝜂𝜂𝑖𝑖;𝛩𝛩) is the density of the individual random effects. 
𝑢𝑢(∙) is generally equal to the probability density function of the normal dis-
tribution for continuous data, and to the probability density function defined 
by 𝑙𝑙(∙) for discrete data. Parameter estimation is performed by minimizing 
the objective function value (OFV), which corresponds to minus two times 
the log-likelihood of all data up to a constant. The calculation of individual 
likelihoods is not trivial and often no analytical solution exists for Eq. 8. 
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Numerical approximations are therefore used, which can be divided into 
gradient-based algorithms and expectation-maximization (EM) algorithms. 
Gradient-based algorithms use the derivative of the approximation of the 
log-likelihood (LL) to guide parameter search. They include the first-order 
(FO), first-order conditional estimation (with interaction) FOCE(I), Laplaci-
an (LAPLACE) and Adaptive Gaussian Quadrature (AGQ) algorithms, 
which differ in the number of quadrature points used to approximate the 
integral (freely chosen for AGQ, 1 for the others), the order of the approxi-
mation (second for AGQ and LAPLACE, first for FOCE(I) and FO) and the 
location of the approximation (𝜂𝜂𝑖𝑖 = 0 for FO, 𝜂𝜂𝑖𝑖 = �̂�𝜂𝑖𝑖 for the others). EM algo-
rithms are based on the alternation of a step estimating the conditional mean 
parameters for each individual and a step maximizing the likelihood of the 
full individual data with respect to the population parameters. EM algorithms 
include the iterative two-stage, importance sampling and stochastic approx-
imation expectation-maximization (SAEM).  

Hypothesis tests are typically carried out on model parameters based on 
the log-likelihood ratio or the Wald statistic. For example, one can test 
whether the drug effect parameter is different from 0 by calculating the sta-
tistic: 
𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  = LL𝑖𝑖�y𝑖𝑖�𝛩𝛩�� − LL𝑖𝑖�y𝑖𝑖�𝛩𝛩�0�    Eq. 9 

where 𝛩𝛩�0 is the estimated vector of model parameters when the drug effect is 
fixed to 0. This statistic, also referred to as the delta Objective Function Val-
ue (dOFV), follows a chi-square distribution with a degree of freedom equal 
to the difference in the number of estimated parameters between 𝛩𝛩�  and 𝛩𝛩�0. 
The Wald statistic is based on the estimate of the parameter uncertainty ob-
tained from the Fisher Information Matrix (FIM) and also follows a chi-
square distribution under H0. These tests are asymptotically equivalent. Note 
that hypothesis testing can also be carried out on functions of model parame-
ters (e.g. endpoint at the end of study), and thus be used for the same type of 
tests than cross-sectional models. A comparative summary of cross-sectional 
and longitudinal models is provided in Table 3. 

Table 3. Differences between cross-sectional and pharmacometric models and tests 

Characteristic Cross-sectional 
model 

Longitudinal 
(pharmacometric) model 

Endpoint 
Clinical endpoint 
(observed) at specific 
time point 

Model parameter(s) (often un-
observed), sometimes function 
of model parameters 

Assumptions Endpoint and test 
statistic distributions 

Structural longitudinal model, 
random effects and test statistic 
distributions 

Parameter estimation Least squares Maximum likelihood 

Example test statistics ANCOVA, endpoint likelihood ratio, Wald, endpoint 
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Hurdles to the use of pharmacometric models for 
decision-making 
There are a number of reasons why pharmacometric models are not used as 
primary analyses for decision-making despite the potential gains they may 
entail. A first reason might be purely organizational: today both drug devel-
opers and regulators are experienced in designing and interpreting confirma-
tory trials based on traditional analyses and there is an abundance of trained 
personnel qualified to do this24. Another reason is the lack of identification 
of the potential benefits and risks of such a shift. Identification of which 
situations are likely (or not) to gain from pharmacometric model-based anal-
ysis lacks systematic investigation. Quantification of the benefits through 
direct comparison of traditional versus pharmacometric model-based analy-
sis has been even rarer, which is partly due to the current use of modeling 
mainly in cases where traditional analysis is not possible22,25. Quantification 
of the risks expressed in the type I and type II errors often stays unanswered, 
which leads to a certain discomfort regarding the use of such methods. In 
addition, the calculation of appropriate sample sizes may have been seen as a 
drawback of pharmacometric methods, as it requires computer-intensive 
Monte Carlo simulations except in simple cases26. However, recently devel-
oped strategies16,27 have made model-based sample size determination very 
accessible, which should foster the implementation of model-based analysis 
in confirmatory settings. The real challenge for pharmacometric model-
based analysis in confirmatory settings lies in the mitigation of its inherent 
risks. These risks can be summarized into three categories: distributional 
assumptions of the model, distributional assumptions of the uncertainty of its 
parameters, and data-driven model-building. 

Distributional assumptions regarding the residual error 
In order to take correct decisions based a pharmacometric model, the as-
sumptions made during the modeling process regarding the distributions of 
the random effects and the residual error need to be met. Semiparametric 
distribution with estimated shape parameters have already been proposed for 
random effects, allowing a more flexible description of their distribution and 
thus increasing compliance to modeling assumptions28. Such possibilities 
have been advocated for the residual error29-31, but no framework has yet 
been proposed and thoroughly investigated for the residual error model. The 
development and evaluation of strategies able to increase compliance to re-
sidual unexplained variability (RUV) assumptions will thus be the focus of 
the first part of this thesis work. 
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Distributional assumptions regarding parameter uncertainty 
Further assumptions are needed for quantifying the uncertainty around a 
given decision using pharmacometric analysis, for example when computing 
the CI around the endpoint to test. These assumptions relate to the distribu-
tion of the uncertainty of model parameters. A number of methods to esti-
mate parameter uncertainty exist, but their performance for NLMEM is not 
well defined, and they might display considerable limitations. In addition, no 
diagnostic exists to judge their appropriateness for a given context. The fo-
cus of the second part of this thesis work will thus be the development of a 
diagnostic to judge the appropriateness of parameter uncertainty estimates, 
and the development and application of a method improving parameter un-
certainty estimation for NLMEM. 

Need for model prespecification 
Lastly, in confirmatory settings the analysis model typically needs to be fully 
prespecified, i.e. all details need to be laid out in advance in the study’s 
analysis plan. This is difficult for NLMEM, which typically undergo data-
driven model-building. The multiplicity of the model building process, 
which can be seen as a series of testing steps leading to a final model, is not 
and cannot easily be accounted for when this model is used for hypothesis 
testing. This may lead to an unacceptable increase in type I error, which is 
particularly worrisome since the increase itself cannot be precisely quanti-
fied. In addition, the data-driven building process also renders the procedure 
subjective and non-reproducible: models can differ depending on the model-
er. In order to ensure reproducibility and type I error control, fully pre-
specified model-based analyses have been proposed, where model building 
is completely avoided25 or limited to a very limited number of steps with 
precisely defined selection criteria32. However, type I error may still not be 
controlled if the prespecified model happens to be misspecified. Model-
averaging, which consists of analyzing the data with a set of prespecified 
models and weighting each model based on its fit to the data, has been pro-
posed as a way to control type I error while guarding against model misspec-
ification33, but experience with this type of approach is lacking. The last part 
of this thesis work will propose and evaluate the performance of two model-
averaged tests to be used in the context of safety and efficacy confirmatory 
trials. 
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Aims 

 

The overall aim of this PhD thesis was to address current hurdles hampering 
the use of pharmacometric model-based analysis for decision-making in 
clinical drug development. The goal was to extend the application of phar-
macometrics to key decision points such as confirmatory trials, thus enabling 
more efficient drug development.  
 

The specific aims were: 

 

• to develop strategies to increase model compliance to distribution-
al assumptions regarding the residual error. 
 

• to develop methods to judge the appropriateness and improve the 
quantification of parameter uncertainty in pharmacometric model-
based analysis. 
 

• to develop and evaluate modeling strategies suitable for model-
based analysis of confirmatory trials, with particular considera-
tions regarding prespecification of the analysis and type I error 
control. 
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Methods 

Methods will be presented in sequence for each of the three components of 
this thesis work: residual error modeling (Paper I), parameter uncertainty 
(Paper II-V) and model prespecification (Paper VI-VII). 

Residual error modeling 
Commonly used models  
Commonly used error models in NLMEM can be expressed using Eq. 10. 

𝑔𝑔�𝑓𝑓�𝑡𝑡𝑖𝑖𝑖𝑖 ,𝜃𝜃𝑖𝑖 , 𝑧𝑧𝑖𝑖𝑖𝑖�, 𝜀𝜀𝑖𝑖𝑖𝑖� = 𝑓𝑓�𝑡𝑡𝑖𝑖𝑖𝑖 ,𝜃𝜃𝑖𝑖 , 𝑧𝑧𝑖𝑖𝑖𝑖�
𝜁𝜁 × 𝜀𝜀𝑖𝑖𝑖𝑖,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 +  𝜀𝜀𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖  Eq. 10 

where 𝑔𝑔(∙) is the residual error function, 𝑓𝑓(∙) is the structural model, tij is the 
observation time of individual i at time j, 𝜃𝜃𝑖𝑖 is the vector of individual pa-
rameters, zij is the vector of individual covariates, εij are residual terms, ζ is a 
power exponent, and εij,slope and εij,intercept are residuals with mean 0 and vari-
ances σ2

slope and σ2
intercept respectively. εij,slope and εij,intercept are independent 

within and between individuals, as well as between each other. Eq. 11 dis-
plays the variance of the observations yij based on Eq. 10. 

𝑣𝑣𝑣𝑣𝑣𝑣(𝑦𝑦𝑖𝑖𝑖𝑖) = 𝑓𝑓�𝑡𝑡𝑖𝑖𝑖𝑖 ,𝜃𝜃𝑖𝑖 , 𝑧𝑧𝑖𝑖𝑖𝑖�
2𝜁𝜁 × 𝜎𝜎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2 + 𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖2  Eq. 11 

Three commonly used error models are the additive, proportional and com-
bined (additive plus proportional) models. The combined error model corre-
sponds to the linear slope-intercept model (ζ = 1). The additive model is 
obtained by setting σ2

slope  = 0. In this case the error is homoscedastic, i.e. it 
does not depend on the model predictions. The error using the proportional 
model, which is obtained by setting σ2

intercept  = 0, is heteroscedastic as it de-
pends on model predictions. 

In NLME modeling based on maximum likelihood, estimated model pa-
rameters correspond to maximum likelihood estimates only if the scedastici-
ty and the distribution shape of the residual error are correctly specified, i.e. 
if the variance is correctly specified and the residuals are normally distribut-
ed (Figure 3). However, the relationship between residuals and model pre-
dictions may not be additive and/or proportional. The distribution of the 
residuals may be skewed or contain more extreme values than the normal 
distribution, which could alter maximum likelihood properties. 
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Figure 3. Maximum likelihood assumptions regarding the residual error: residuals ε 
are normally distributed (distribution shape) and their relationship to model predic-
tions (scedasticity) is correctly specified. 

Proposed error models: dTBS and the t-distribution 
Two strategies can be envisaged to render residual error models more flexi-
ble, so that maximum likelihood assumptions regarding the residual error are 
more easily met in the presence of skewed or outlying residuals. 

dTBS 
The first strategy is called dynamic Transform-Both-Sides (dTBS) and al-
lows skewed and/or heteroscedastic residuals by performing parameter esti-
mation on a transformed scale, on which the residuals are normally distribut-
ed. With dTBS, observations and model predictions are transformed using a 
Box-Cox distribution with shape parameter λ (Eq. 12). The residual function 
is a power ζ of the untransformed model predictions (Eq. 13).  

�ℎ(𝑥𝑥, 𝜆𝜆) =
𝑥𝑥𝜆𝜆 − 1
𝜆𝜆

 if 𝜆𝜆 ≠ 0

ℎ(𝑥𝑥, 𝜆𝜆) = log(𝑥𝑥)  otherwise
 

ℎ(𝑦𝑦𝑖𝑖𝑖𝑖 , 𝜆𝜆) = ℎ(𝑓𝑓�𝑡𝑡𝑖𝑖𝑖𝑖,𝜃𝜃𝑖𝑖 , 𝑧𝑧𝑖𝑖𝑖𝑖�, 𝜆𝜆) + 𝑓𝑓�𝑡𝑡𝑖𝑖𝑖𝑖 ,𝜃𝜃𝑖𝑖 , 𝑧𝑧𝑖𝑖𝑖𝑖�
𝜁𝜁 × 𝜀𝜀𝑖𝑖𝑖𝑖 Eq. 13  

where x is a variable, ℎ(𝑥𝑥, 𝜆𝜆) is its Box-Cox transform with shape parameter 
λ, yij are observations, f(tij,θi,zij) are model predictions, ζ is a power parame-
ter and εij are residual terms. All model parameters including the transfor-
mation (shape) parameter λ and the power parameter ζ can be estimated us-
ing maximum likelihood assuming that the residuals on the transformed 
scale are normally distributed with correctly specified scedasticity. The OFV 
is set to minus two times the log-likelihood of the data on the untransformed 
scale given all parameters in order to allow for the estimation of λ. This OFV 
can be obtained from the likelihood of the data on the transformed scale 
using the change of variable formula (Eq. 14). 
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� 𝐿𝐿Y =  𝐿𝐿ℎ(Y,𝜆𝜆) ×
𝑑𝑑�ℎ(Y, 𝜆𝜆)�

𝑑𝑑𝑑𝑑
= 𝐿𝐿ℎ(Y,𝜆𝜆) × Y𝜆𝜆−1

𝑂𝑂𝑃𝑃𝑂𝑂 = −2 𝐿𝐿𝐿𝐿Y = −2𝐿𝐿𝐿𝐿ℎ(Y,𝜆𝜆) − 2(𝜆𝜆 − 1) log(Y)
 

where LY is the likelihood of the untransformed data and Lh(Y,λ) the likelihood 
of the transformed data. λ > 1 indicates that the distribution of the residuals 
is left skewed on the untransformed scale and λ < 1 indicates that the distri-
bution is right skewed. If λ = 1, the residuals are normally distributed, and if 
λ = 0 they are log-normally distributed. With dTBS the error is proportional 
to the ζ power of the model predictions on the transformed scale, which cor-
responds to an error approximately proportional to the (1 – λ + ζ) power of 
the model predictions on the untransformed scale (Eq. 15). The dTBS model 
includes the additive (λ = 1 and ζ = 0) and proportional (λ = 1 and ζ = 1) 
error models, as well as the additive-on-log error model (λ = 0 and ζ = 0). 

𝑂𝑂𝑣𝑣𝑣𝑣�𝑦𝑦𝑖𝑖𝑖𝑖� = 𝑂𝑂𝑣𝑣𝑣𝑣 �ℎ�𝑦𝑦𝑖𝑖𝑖𝑖 , λ�� × �
𝑑𝑑ℎ�𝑓𝑓�𝑡𝑡𝑖𝑖𝑖𝑖 ,𝜃𝜃𝑖𝑖 , 𝑧𝑧𝑖𝑖𝑖𝑖�, λ�
𝑑𝑑𝑓𝑓�𝑡𝑡𝑖𝑖𝑖𝑖 ,𝜃𝜃𝑖𝑖 , 𝑧𝑧𝑖𝑖𝑖𝑖�

�
−2

 Eq. 15 

≈ 𝑓𝑓�𝑡𝑡𝑖𝑖𝑖𝑖 ,𝜃𝜃𝑖𝑖 , 𝑧𝑧𝑖𝑖𝑖𝑖�
2𝜁𝜁 × 𝜎𝜎2 × 𝑓𝑓�𝑡𝑡𝑖𝑖𝑖𝑖 ,𝜃𝜃𝑖𝑖 , 𝑧𝑧𝑖𝑖𝑖𝑖�

2(1−𝜆𝜆)
= 𝜎𝜎2 × 𝑓𝑓�𝑡𝑡𝑖𝑖𝑖𝑖 ,𝜃𝜃𝑖𝑖 , 𝑧𝑧𝑖𝑖𝑖𝑖�

2(1−𝜆𝜆+𝜁𝜁)
 

where yij are observations, h(yij,,λ) are the Box-Cox transforms with shape 
parameter λ, f(tij,θi,zij) are model predictions, ζ is the power parameter and σ2 
is the residual variance. 

Student’s t-distribution 
Instead of transforming both sides to obtain normally distributed residuals, 
an alternative strategy for increasing the flexibility of the residual error mod-
el is to change the distributional assumption. In this work we used the Stu-
dent’s t-distribution, which is a symmetric distribution characterized by its 
degree of freedom 𝜈𝜈. The degree of freedom governs the heaviness of the 
tails of the distribution: the t-distribution approaches the normal distribution 
when 𝜈𝜈 → +∞, and displays heavier tails when 𝜈𝜈 → 0 (Figure 4).  

 

 
Figure 4. Student’s t-distributions with varying degrees of freedom 𝜈𝜈. 

Eq. 14 
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Model parameters and the degree of freedom of the t-distribution can be 
estimated by minimizing the OFV expressed as PDF of the Student’s t-
distribution: 

𝑂𝑂𝑃𝑃𝑂𝑂 =  −2log�
𝛤𝛤 �𝜈𝜈 + 1

2 �

𝛤𝛤 �𝜈𝜈2��𝜋𝜋𝜈𝜈𝑂𝑂𝑣𝑣𝑣𝑣(𝑑𝑑)
× �1 + 

1
𝜈𝜈
�𝑑𝑑 − 𝑓𝑓(𝑡𝑡,𝜃𝜃, 𝑧𝑧)�2

𝑂𝑂𝑣𝑣𝑣𝑣(𝑑𝑑) �
−  𝜈𝜈+12

� 
Eq. 16  

where 𝛤𝛤 is the gamma function, 𝜈𝜈 is the degree of freedom, Y are the obser-
vations and f(t,θ,z) are model predictions. For estimation, the lower bound of 
𝜈𝜈 was set to 3 and its upper bound to 200, as the variance of the t-distribution 
is undefined for 𝜈𝜈 < 3 and high 𝜈𝜈 approximates a normal distribution. 

Evaluation of the new error models on real data examples 
 
The dTBS and t-distribution approaches were tested on 10 previously pub-
lished real data examples34-42 detailed in Table 4. 

Table 4. Description of the 10 real data examples used to investigate the dTBS and 
t-distribution approaches 

Model Data 
type Model type Error model Trans-

formation 
Number 

of obs. 
Number 

of ID 
ACTH/ 
cortisol34 PD turnover combineda - 364 7 

Cladribine36 PK i.v. 3CMT combined - 488 65 

Cyclophos-
phamide/ 
Metabolite37 

PK 
oral 4CMT, 
CL induc-
tion 

additive 
(parent), 
combined 
(metabolite) 

- 383 14 

Ethambutol38 PK oral 2CMT, 
transit combined log 1869 189 

Moxonidine 
PK39 PK oral 1CMT additive log 1021 74 

Moxonidine 
PD39 PD Emax additive log 1364 97 

Paclitaxel40 PD neutrophil additive 
fixed Box-

Cox 
(𝜆𝜆=0.2) 

523 45 

Pefloxacin41 PK i.v. 1CMT proportional - 337 74 
Phenobarbi-
tal42 PK i.v. 1CMT proportional - 155 59 

Prazosin35 PK oral 1CMT proportional - 887 64 
a additive component fixed; obs.: observations; ID: individuals; PK: pharmacokinetic; PD: 
pharmacodynamic; CMT: compartment; i.v.:intravenous. 
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In the dTBS approach, the Box-Cox and power parameters were estimated 
either simultaneously or alone (the latter by fixing the other parameter to its 
value in the original model) using the FOCEI and SAEM algorithms. For the 
t-distribution approach, the scedasticity model was kept identical to the orig-
inal model and the degree of freedom was estimated simultaneously to all 
other model parameters using the LAPLACE method with user-defined like-
lihood. In terms of implementation, the dTBS model could be used without 
modification of the model file on the untransformed scale in the PsN soft-
ware43 using the –dtbs option. The t-distribution was coded manually. 

The impact of the new error models was assessed based on the likelihood 
ratio test. All model parameter estimates, and their standard errors (SE) if 
available, were compared. Plots of observations versus individual predic-
tions, individual plots and VPC were inspected, as well as the distribution 
and scedasticity of conditional weighted residuals (CWRES), normalized 
prediction distribution errors (NPDE) and individual weighted residuals 
(IWRES). Changes in individual OFV (OFVi) were investigated to identify 
whether subsets of individuals benefited more than others from a given re-
sidual error model. Cross-validation techniques were also used to assess the 
predictive performance of the dTBS approach. 

Evaluation of the new error models on simulated examples 
The bias, precision and type I error rates of the new error parameters were 
investigated using stochastic simulations and estimations. Drug plasma con-
centration data was simulated according to a one-compartment disposition, 
first order absorption and elimination PK model displaying additive, propor-
tional or additive-on-log error models. Population values used for simulation 
were a clearance (CL) of 10 liters/hour, a volume of distribution (V) of 100 
liters and an absorption constant (KA) of 1/hour, with all inter-individual 
variabilities (IIV) set to 30% on the standard deviation scale. The RUV was 
0.2 for the additive and additive-on-log models and 20% for the proportional 
model. For each scenario, 500 datasets comprising 400 observations from 50 
patients with PK samples at 0.25, 0.5, 1, 2, 5, 8, 12 and 24 hours (h) after 
administration of a single oral dose of 1000 milligrams (mg) were simulated. 
The FOCEI and SAEM estimation methods were used for the dTBS scenari-
os, and the LAPLACE estimation method was used for the t-distribution 
scenarios. 
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Parameter uncertainty  
Apart from the assumptions about the residual error, which are necessary for 
appropriate model estimation, further distributional assumptions about the 
uncertainty around model parameters often need to be made when taking 
model-based decisions. A number of methods are available to compute the 
uncertainty around model parameter estimates: the covariance matrix, the 
bootstrap, likelihood profiling and stochastic simulation and estimations. 
However, how well these different methods perform in NLMEM remains 
insufficiently understood. 

Commonly used methods  
The most commonly used method to assess parameter uncertainty is through 
the covariance matrix. Based on maximum likelihood theory, assuming the 
number of individuals is high and the random effects and residual variability 
are normally distributed, the distribution of the maximum likelihood esti-
mates can be approximated by a multivariate normal distribution with mean 
𝛩𝛩�  and covariance matrix 𝑂𝑂� . The covariance matrix 𝑂𝑂�  is estimated at the max-
imum likelihood estimates 𝛩𝛩� , and the square roots of its diagonal elements 
correspond to the standard errors of the model parameters44. Three estima-
tors of the covariance matrix are commonly used45.  

The first estimator is the inverse of the FIM, which corresponds to the 
negative of the Hessian matrix, i.e. the square matrix of the second-order 
partial derivatives of the likelihood function (Eq. 17). It is referred to as the 
R matrix in NONMEM46. R is a consistent estimator of the covariance ma-
trix. 

𝑅𝑅 = �−
1
2
𝜕𝜕2(−2𝐿𝐿𝐿𝐿)
𝜕𝜕𝛩𝛩𝜕𝜕𝛩𝛩𝑇𝑇

�
−1

 Eq. 17  

where -2LL is minus two times to log-likelihood of the data and 𝛩𝛩 is the 
vector of model parameters. 

The second estimator is the S matrix, which corresponds to the inverse of 
the gradient product matrix based on the first-order derivatives of the likeli-
hood function (Eq. 18). It is referred to as the S matrix in NONMEM. S is 
also a consistent estimator of the covariance matrix. 

𝑆𝑆 = �
1
4
𝜕𝜕(−2𝐿𝐿𝐿𝐿)

𝜕𝜕𝛩𝛩
×
𝜕𝜕(−2𝐿𝐿𝐿𝐿)
𝜕𝜕𝛩𝛩𝑇𝑇

�
−1

 Eq. 18 

where -2LL is minus two times the log-likelihood of the data and 𝛩𝛩 is the 
vector of model parameters. 
  



 30 

The last and most commonly used estimator in NLMEM is the “sandwich” 
matrix SW, which is a combination of the R and S matrices (Eq. 19): 

𝑆𝑆𝑆𝑆 =  𝑅𝑅𝑆𝑆−1𝑅𝑅 Eq. 19  

Note that with rich data and normally distributed random effects, all three 
estimators are expected to converge to the same value. The sandwich estima-
tor is usually preferred for continuous data because it is expected to be more 
robust to misspecifications of the random effect distributions. For discrete 
data, for which the normality assumption on the random effects is more like-
ly to hold, R is typically preferred. The standard errors of model parameters 
are derived directly from the estimator as the square roots of the diagonal 
elements of the matrix. Approximate asymptotic CI for a given parameter 𝜃𝜃�𝑖𝑖 
at the α confidence level can then be computed as �𝜃𝜃�𝑖𝑖 ± 𝑧𝑧1−𝛼𝛼/2𝑆𝑆𝑆𝑆 𝜃𝜃�𝑐𝑐�, where 
𝑧𝑧1−𝛼𝛼/2 is the 1-α/2 quantile of the normal distribution. Note that covariance-
matrix based CI are symmetric. 

The method which is often considered the gold standard to assess parame-
ter uncertainty is the bootstrap47. With bootstrap, parameter uncertainty 
distributions are typically represented by a set of model parameter vectors, 
which are obtained by estimating model parameters on a number of boot-
strapped datasets (e.g. 1000). In NLMEM, bootstrapped datasets are typical-
ly obtained from the original data using case bootstrap, where the full data of 
one individual is resampled with replacement. Bootstrapped datasets thus 
contain the same number of individuals as the original dataset, with some 
individuals appearing more than once and some individuals not present at 
all. Stratification, i.e. performing the resampling within subgroups of the 
data typically defined by design variables such as treatment arm or sex, is 
often used to obtain bootstrapped datasets similar in structure to the original 
dataset. Parameters are estimated based on the bootstrapped datasets and the 
final model, with initial parameter estimates set to 𝜃𝜃�. Nonparametric percen-
tiles-based CI can be derived for each parameter from the bootstrap parame-
ter vectors as �𝜃𝜃�𝑖𝑖,𝑠𝑠𝑏𝑏𝑏𝑏𝑏𝑏𝑐𝑐,𝛼𝛼/2;𝜃𝜃�𝑖𝑖,𝑠𝑠𝑏𝑏𝑏𝑏𝑏𝑏𝑐𝑐,1−𝛼𝛼/2�, where 𝑝𝑝𝛼𝛼/2 and 𝑝𝑝1−𝛼𝛼/2 are the α/2th and 
(1-α/2)th percentiles of the ordered parameter values. Bootstrap CI are not 
necessarily symmetric. Note that many other ways of performing the 
resampling and of computing bootstrap CI exist48-50, but they will not be 
discussed here. 

Log-likelihood profiling51 (LLP), often referred to as profile likelihood 
or likelihood profiling, can also be used to assess parameter uncertainty. 
With LLP, the CI around a parameter is computed by estimating the OFV for 
an array of fixed values of this parameter, while estimating the remaining 
parameters. Values of the parameter which lead to OFV increases of 3.84 
compared to the OFV of the final model are taken as the bounds of the 95% 
CI of the parameter. The critical value (3.84) corresponds to the value of the 
chi-square distribution for one degree of freedom and at the α confidence 
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level (χ𝛼𝛼
𝑑𝑑𝑓𝑓=1). The LLP CI can be expressed as �𝜃𝜃�𝑖𝑖,lb,χ𝛼𝛼

𝑑𝑑𝑑𝑑=1;𝜃𝜃�𝑖𝑖,ub,χ𝛼𝛼
𝑑𝑑𝑑𝑑=1�, where lb 

and ub are the lower and upper bound, respectively. Despite some work on 
multivariate implementation52, LLP currently does not provide full uncer-
tainty distributions, but only univariate bounds. LLP CI are not necessarily 
symmetric. 

Lastly, stochastic simulations and estimations (SSE), also known as 
parametric bootstrap, can be used to estimate parameter uncertainty. With 
SSE, a given number of datasets (e.g. 1000) identical in design to the origi-
nal dataset are simulated using the final model and the final parameter esti-
mates. The simulated datasets are then used in the same manner as the boot-
strapped datasets to re-estimate the model parameters. Percentiles-based CI 
can then be derived for each parameter from the re-estimated parameter vec-
tors as �𝜃𝜃�𝑖𝑖,𝑠𝑠𝑆𝑆𝑆𝑆𝑆𝑆,𝛼𝛼/2;𝜃𝜃�𝑖𝑖,𝑠𝑠𝑆𝑆𝑆𝑆𝑆𝑆,1−𝛼𝛼/2�, where 𝑝𝑝𝛼𝛼/2 and 𝑝𝑝1−𝛼𝛼/2 are the α/2th and (1-
α/2)th percentiles of the ordered parameter values. This method is slightly 
different from the other presented methods as it evaluates the uncertainty 
using simulated data. SSE uncertainty is obtained using the same model for 
data simulation and data fitting, which is not the case when using real data. 
The SSE thus corresponds to the uncertainty distribution of a given model 
and design in the absence of model misspecification. A comparison of the 
different methods is provided in Table 5.  

Table 5. Comparison of methods to estimate parameter uncertainty 

Charac-
teristic 

Cov. 
matrix Bootstrap LLP SSE SIR* 

Computation 
time 

rapid long  middle  long middle  

Obtention potential 
numerical 
difficulties 

high 
number of 
estimations 

moderate 
number of 
estimations 

high 
number of 
estimations 

no estima-
tion, high 
number of 
evaluations 

Data 
structure 

rich data big enough 
groups, 
balanced 
designs 

no 
restriction 

no 
restriction 

no 
restriction 

Distribution 
assumptions 

multivariate 
normal, full, 
symmetric 

nonpara-
metric, full, 
asymmetric 

bounds 
only, 
asymmetric  

nonpara-
metric, full, 
asymmetric 

nonpara-
metric, full, 
asymmetric 

Cov.: covariance; *Sampling Importance Resampling, described in a later subsection (p.34). 

The dOFV diagnostic: assessing uncertainty adequacy 
The covariance matrix, bootstrap, LLP and SSE may lead to different uncer-
tainty estimates. However, it is difficult to know which method to rely on in 
a given case, as no diagnostic assessing the adequacy of a given parameter 
uncertainty distribution is routinely used in NLMEM. A new diagnostic was 
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thus proposed to assess and compare the adequacy of parameter uncertainty 
distributions. The diagnostic was based on the comparison of the dOFV dis-
tribution of a given uncertainty estimate with a theoretical distribution. The 
diagnostic was developed for the bootstrap, but can be applied to any uncer-
tainty estimate for which parameter vectors can be obtained (i.e. all present-
ed methods except the LLP). 

The dOFV distribution of the uncertainty estimate to assess is obtained by 
evaluating the OFV (i.e. MAXEVAL = 0 in NONMEM46) of the original 
data D for N parameter vectors 𝛩𝛩�𝑖𝑖 (n = 1, …, N) sampled from the uncertain-
ty estimate. The OFV of the original data with the final parameter estimates 
𝛩𝛩�  is then subtracted from each of these OFV to obtain N dOFV (Eq. 20). 

𝑑𝑑𝑂𝑂𝑃𝑃𝑂𝑂𝑖𝑖 = 𝑂𝑂𝑃𝑃𝑂𝑂𝛩𝛩�𝑛𝑛,𝐷𝐷 − 𝑂𝑂𝑃𝑃𝑂𝑂𝛩𝛩,𝐷𝐷 Eq. 20  

where dOFVn is the nth bootstrap dOFV. The first index of the OFV corre-
sponds to the parameter vector used, and the second to the dataset the pa-
rameter vector is estimated/evaluated on. 𝛩𝛩�𝑖𝑖 is the parameter vector estimat-
ed on the nth bootstrap dataset, and 𝛩𝛩�  is the parameter vector estimated on 
the original dataset D.  

The theoretical dOFV distribution corresponds to a chi-square distribution 
with degrees of freedom equal to the number of estimated model parameters.  

The proposed diagnostic displays the quantile function, also known as the 
inverse cumulative distribution function, of the two just described dOFV 
distributions as illustrated in Figure 5. 

 
Figure 5. Example of the dOFV distribution plot diagnostic where the parameter 
uncertainty estimate to evaluate was obtained by bootstrap. 

The principle behind the dOFV diagnostic is that if the parameter vectors 
sampled from the uncertainty estimate were representative of the true uncer-
tainty, their dOFV distribution should follow a chi-square distribution53. The 
degrees of freedom of this chi-square distribution should be asymptotically 



 33 

equal to the number of estimated parameters for unconstrained fixed effects 
models. This means that the dOFV distribution of the uncertainty estimate 
should overlay the theoretical dOFV distribution. However, for NLMEM the 
exact degree of freedom is unknown. This is due to a number of factors, 
including the estimation of bounded parameters such as variances, which 
may not account for full degrees of freedom, or properties of the estimation 
method54. The dOFV distribution is thus not necessarily expected to collapse 
to the theoretical dOFV distribution when the uncertainty is appropriate. 
However, as the degree of freedom cannot exceed the number of estimated 
parameters, the diagnostic considers the uncertainty estimate appropriate if 
its dOFV distribution is at or below the theoretical distribution.  

While the dOFV distribution is not necessarily expected to collapse to the 
theoretical dOFV distribution, it is expected to collapse to the SSE dOFV 
distribution, which corresponds to the expected dOFV distribution of a given 
NLMEM in the absence of model misspecification. The SSE could not be 
routinely used as a reference distribution in the dOFV diagnostic due to its 
high computational burden. It was computed for the investigated examples in 
order to judge whether using the theoretical distribution as a surrogate for 
the SSE distribution was appropriate.  

Evaluation of bootstrap adequacy in NLMEM 
The dOFV diagnostic was applied to the bootstraps of two real data and two 
simulation examples. The two real data examples were the phenobarbital42 
and pefloxacin41 examples previously described in Table 4. The first simula-
tion example consisted of an intravenous (i.v.) 1-compartment PK model 
with linear elimination. CL and V were set to 1, exponential IIV was 30% on 
both parameters, and the RUV was additive on the log scale with a standard 
deviation of 0.2. Three different dataset sizes were investigated: 20, 50 and 
200 individuals, with four observations each at 0.25, 0.5, 1 and 2 units after 
single dose administration. The second simulation example consisted of a 
pharmacodynamic (PD) dose-response sigmoidal Emax model, with a base-
line E0 of 10, an additive maximum effect EMAX of 100, a dose leading to 
half the maximum effect ED50 of 5, a Hill factor of 0.7, 30% exponential 
IIV on E0 and ED50, and a 10% proportional RUV. Three different dataset 
sizes were investigated: 20, 50 and 200 individuals with four observations 
each at doses of 0, 2.5, 5 and 15.  

For the real data examples, bootstrap and SSE dOFV distributions were 
assessed for the original dataset, 10 simulated datasets using the original 
design, and 10 datasets simulated using an 8-fold increase in the number of 
individuals. The 8-fold increased datasets were used to test the influence of 
sample size on bootstrap performance. In the simulation examples, bootstrap 
and SSE dOFV distributions were assessed for 100 datasets for each dataset 
size. The degree of freedom of all dOFV distributions was calculated as the 
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mean of each dOFV distribution. The adequacy of parameter uncertainty was 
evaluated based on parameter CI, using CI obtained from the SSE as a refer-
ence. Coverage at the 90% level was investigated for each parameter by 
calculating the proportion of datasets for which the 90% CI included the true 
simulation value for that parameter. From statistical theory, the expected 
coverage at the 90% level is 0.90, i.e. 90% of the simulated datasets should 
include the true simulation values in their 90% CI. 

SIR: improving parameter uncertainty estimation  
Given the observed limitations of currently available methods highlighted in 
Table 5, a method based on Sampling Importance Resampling55 (SIR) was 
proposed to improve the estimation of parameter uncertainty distributions in 
NLMEM. SIR provides a set of m parameter vectors representative of the 
true and unknown parameter uncertainty distribution. SIR is performed in 
three steps:  

 
1. Step 1 (sampling): M (M > m) parameter vectors are randomly sampled 

from a proposal multivariate distribution.  
 

2. Step 2 (importance weighting): an importance ratio is computed for 
each of the M sampled parameter vectors. It corresponds to the probabil-
ity of being sampled in the true parameter uncertainty distribution and is 
computed as the likelihood of the data given the parameter vector, 
weighted by the likelihood of the parameter vector in the proposal distri-
bution (Eq. 21).  

𝐼𝐼𝑅𝑅 =
𝑒𝑒𝑥𝑥𝑝𝑝 (−0.5 × 𝑑𝑑𝑂𝑂𝑃𝑃𝑂𝑂)

𝑣𝑣𝑒𝑒𝑙𝑙𝑃𝑃𝑃𝑃𝑃𝑃
 

Eq. 21  

where IR is the importance ratio, dOFV is the difference between the 
OFV of the sampled parameter vector and the OFV of the final parame-
ter estimates, and relPDF is the probability density function of the pa-
rameter vector relative to the probability density of the final parameter 
estimates given the proposal distribution.  

 
3. Step 3 (resampling): in the last step, m parameter vectors are resampled 

from the pool of M sampled vectors based on their importance ratio.  
 

When performing SIR, three settings need to be chosen: the proposal distri-
bution, the number of samples M and the number of resamples m. SIR was 
first developed using a non-iterative 1-step procedure starting from the 
sandwich covariance matrix as proposal distribution, with M = 5000 and 
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m = 1000 (Paper III). Diagnostics were developed to assess whether the cho-
sen SIR settings were appropriate, in which case SIR results were considered 
final. After investigating the influence of different SIR settings, an improved 
iterative 5-step SIR procedure was developed (Paper IV), starting from the 
sandwich covariance matrix, a limited bootstrap (e.g. 200 samples or less) or 
a generic covariance matrix (e.g. with 30% relative standard error (RSE) on 
fixed effects, 50% RSE on random effects and 10% RSE on residual varia-
bility). The resamples of the first step were used as proposal distribution of 
the second step, and the procedure was repeated for a series of M = 1000, 
1000, 1000, 2000, 2000 samples and m = 200, 400, 500, 1000, 1000 
resamples. A summary of the 5-step SIR procedure is provided in Figure 6. 

 
 
 

 
Figure 6. SIR workflow. To obtain SIR parameter uncertainty for a given model, a 
proposal distribution first needs to be chosen by the user. Choices for this distribu-
tion in decreasing order of efficiency are the covariance matrix, a limited bootstrap 
or a generic covariance matrix. Once the proposal is chosen, the PsN sir function is 
used to automatically perform 5 SIR iterations. SIR results are considered final if the 
dOFV distributions of the last 2 iterations are overlaid.  

Three graphical diagnostics were used to judge whether SIR results could be 
considered final at the end of the 5-step procedure: the dOFV distribution 
plot (developed in the previous subsection), the spatial trends plot and the 
temporal trends plot. Each plot will now be described.  

Check diagnostics 
Proposal dOFV  

< χ2 
Last 2 SIR dOFV 

overlaid 
Last 2 SIR dOFV 

different 

Automated 5-step SIR 
 
 

Define proposal distribution 

Covariance matrix Limited bootstrap Generic covariance 
matrix 

SIR final 

Add  
iterations iterations

Inflate 
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1. The dOFV distribution plot (Figure 7) is the main diagnostic plot and 
diagnoses SIR convergence. It displays the dOFV distributions of the 
samples M and resamples m at each SIR iteration. SIR results are con-
sidered final when the resamples dOFV distributions of the last two SIR 
iterations are overlaid up to sampling noise, provided the initial proposal 
is above the theoretical distribution. Overlaid distributions correspond to 
a case where the uncertainty estimate cannot be further improved. An in-
itial proposal below the theoretical indicates that the initial proposal is 
too narrow, in which case SIR should be restarted using an inflated pro-
posal distribution, i.e. by multiplying the covariance matrix by a single 
factor until the proposal is above the reference chi-square. Details on the 
need for inflation will be discussed later. In case the last two SIR dOFV 
distributions are not overlaid, further iterations (e.g. with M = 2000 and 
m = 1000) should be added until convergence. 

 
Figure 7. Example dOFV diagnostic plot showing convergence of the 5-step 
SIR procedure for a model with 18 estimated parameters. 

2. The spatial trends plot (Figure 8) assesses the adequacy of the proposal 
distribution for each parameter. It displays the number of resampled pa-
rameters divided by the number of available parameters, i.e. the 
resampling proportion, in 10 different bins of the parameter space. The 
bins were obtained by binning parameters ordered by increasing value 
(“spatial” bins). Four types of trends can be observed in this plot: hori-
zontal trends (i.e. no trend), which mean that the proposal distribution is 
close to the true uncertainty; bell-shaped trends, which mean that the 
proposal distribution is wider than the true distribution; u-shaped trends, 
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which mean that the proposal distribution is narrower than the true dis-
tribution; and diagonal trends, which mean that the proposal distribution 
has a different (a)symmetry than the true distribution. 

 
Figure 8. Example spatial trend plot showing the (in)adequacy of the proposal 
distribution. In this example the proposal appears adequate for CL, V and their 
IIV (horizontal trends), too wide for TLAG and RUV (bell-shaped trends) and 
lacking asymmetry for KA and its IIV and IOV (diagonal trends). The dotted 
line represents the expected proportion and the grey shaded area the stochastic 
noise around the expected proportion. 

 
3. The temporal trends plot (Figure 9) indicates, for each parameter, 

whether M, or more specifically the M/m ratio, was high enough to com-
pensate for the inadequacy of the proposal distribution potentially ob-
served in the spatial trends plot. The temporal trends plot focuses on the 
top spatial bin, defined from the spatial trends plot as the bin with the 
highest resampling proportion. Instead of binning sampled parameters 
based on their value as for the spatial trends plot, resampled parameters 
are now binned based on the order in which they were resampled (“time” 
bins). Two trends can be observed for this diagnostic: horizontal trends 
(i.e. no trend), which mean that M/m was sufficient to compensate for a 
potential inadequacy of the proposal distribution; and downward diago-
nal trends, which mean that there were not enough samples in the SIR 
procedure to fully correct the proposal uncertainty. 

 



 38 

 
Figure 9. Example temporal trend plot showing the exhaustion of samples. In 
this example, there appears to be no exhaustion of samples (horizontal trends). 
The dotted line represents the expected number of resamples and the grey shad-
ed area the stochastic noise around the expected number of resamples. 

Evaluation of the 1-step SIR on simulated data 
The properties of the initially developed 1-step SIR procedure (sandwich 
covariance matrix as proposal distribution, M = 5000 samples and m = 1000 
resamples) were investigated on two simulation examples, an i.v.  
1-compartment PK model with first-order elimination and a PD dose-
response Emax model. The simulation examples were identical to those used 
for the investigation of the dOFV diagnostic (see page 28) except that the 
Hill factor was fixed to 1. Parameter uncertainty was computed using SIR 
and using the covariance matrix for each of the parameters and each of the 
500 simulated datasets. The coverage at the 95% level, i.e. the proportion of 
datasets for which the computed 95% CI included the true simulation value, 
was calculated. The coverage obtained with SIR was compared to the cover-
age obtained with the covariance matrix. 

Evaluation of the 1-step SIR on real data  
The 1-step SIR procedure was also applied to three real data PK examples: 
the moxonidine39, pefloxacin41 and phenobarbital42 examples, which were i.v. 
and oral 1-compartment PK models (Table 4). The developed diagnostics 
were used to judge whether the default SIR settings were appropriate for 
these examples. The parameters’ 95% CI were compared between SIR, the 
covariance matrix, bootstrap (1000 samples, no stratification) and LLP. 
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In addition, the real data examples were used to investigate the influence of 
SIR settings, i.e. the number of samples M and the proposal distribution, on 
SIR results. Different numbers of samples were investigated (M = 2000, 
4000, 6000, 8000 and 10000). The number of resamples m was not modified 
(m = 1000), as this number was chosen in order to have sufficient precision 
on the outer bounds of the CI of interest. Corresponding M/m ratios were 
thus 2, 4, 6, 8 and 10. Different proposal distributions were also investigated, 
which corresponded to inflations and deflations of the covariance matrix. 
Variances and covariances of the covariance matrix were either increased or 
decreased by factors of 0.5, 0.75 1.5 and 2. 

Evaluation of the 5-step SIR on real data  
Based on the results obtained with the 1-step procedure, an improved 5-step 
SIR workflow was developed and evaluated on 25 NLMEM41,56-79. A sum-
mary of the characteristics of the models is provided in Table 6. The evalua-
tion of the 5-step procedure was based on the number of iterations needed 
until stabilization, and on the degree of freedom of the dOFV distribution 
(calculated as the mean of the dOFV distribution) obtained at stabilization. 
Typical and atypical behaviors were reported and analyzed. 

The influence of the initial proposal distribution was investigated by per-
forming the 5-step procedure using a generic covariance matrix as initial 
proposal distribution (“generic SIR”) instead of the covariance matrix or the 
limited bootstrap (“informed SIR”). The generic covariance matrix was set 
to a multivariate normal distribution with 30% RSE on fixed effects, 50% 
RSE on inter-individual and inter-occasion variabilities, 10% on residual 
variabilities, and no correlations between any of the parameter uncertainties. 
Final parameter uncertainty distributions, the number of iterations until sta-
bilization, the runtime and the final degrees of freedom were compared be-
tween the informed SIR and the generic SIR. 

The uncertainty obtained with the informed SIR was also compared to the 
uncertainty obtained with three other methods: the covariance matrix, boot-
strap and SSE, based on 1000 samples for all methods. Following metrics 
were compared: i) RSE, ii) relative widths of the parameters’ 95% CI, calcu-
lated as the distance between the CI’s upper and lower bounds divided by the 
final parameter estimate, and iii) the asymmetry of the CI, quantified by the 
ratio of the distance between the CI’s upper bound and the median divided 
by the distance between the CI’s lower bound and the median. Runtime 
comparisons were performed between SIR and bootstrap using the ratio be-
tween the time 7000 likelihood evaluations were expected to take for SIR 
versus the time 1000 likelihood estimations were expected to take for the 
bootstrap.  
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Table 6. Summary of the 25 NLMEM models used to investigate the 5-step SIR 
Model characteristic Categories / Mean value [Range] 

Type of model 10 PK, 15 PD (total 25) 
Type of data 21 continuous, 4 categorical 
Number of estimated parameters 15 [1-39] 
Proportion of random effects (%) 27 [0-77] 
Number of individuals 115 [6-551] 
Number of observations 4076 [58-47784] 
Number of observations/individual 28 [1-102] 
Estimation method 3 FO, 5 FOCE, 10 FOCEI, 7 LAPLACE 
PK: pharmacokinetic; PD: pharmacodynamic; FO: first-order; FOCE: first-order conditional 
estimation; FOCEI: first-order conditional estimation with interaction; LAPLACE: Laplaci-
an. 

Application of SIR for decision-making using a WBPBPK model 
The developed 5-step SIR procedure was used to estimate parameter uncer-
tainty in an interspecies whole-body physiologically based pharmacokinetic 
(WBPBPK) model describing colistin and colistin methanesulfonate (CMS) 
PK. Parameter uncertainty obtained with SIR was used to drive model-
building decisions and to predict human plasma concentrations.  

The interspecies WBPBPK model was adapted from a model previously 
developed in rats62 using plasma concentration data from five animal spe-
cies: mice, rats, rabbits, baboons and pigs. A schematic of the model is pre-
sented in Figure 10. Species-independent priors derived from rat tissue ho-
mogenate experiments were implemented on all tissue-to-plasma partition 
coefficients (Kp). Physiological parameters such as tissue volumes, blood 
and urinary flow rates, hematocrit, plasma unbound fraction and glomerular 
filtration rates were fixed to values obtained from the literature. CMS hy-
drolysis to colistin (CLhyd-CMS) was scaled across species using allometric 
scaling on tissue volume with estimated exponent. CMS renal clearance 
(CLr-CMS) was scaled across species using allometric scaling on the glomeru-
lar filtration rate with exponent fixed to 1. Because colistin elimination re-
mains poorly understood, three scaling models were tested for colistin non-
renal clearance (CLnr-coli): allometric scaling based on volume with estimated 
exponent (Model A), allometric scaling based on volume with estimated 
exponent and corrected by maximum lifespan potential (Model B), and no 
scaling, i.e. species-dependent CLnr-coli (Model C). Parameter uncertainty was 
obtained via the 5-step SIR procedure starting from the sandwich covariance 
matrix and was used to evaluate the three scaling models. 

The interspecies WBPBPK model was then used to predict plasma con-
centrations of colistin and CMS in human taking parameter uncertainty into 
account. Model predictions were compared to human data obtained from a 
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published PK study which included 12 healthy volunteers who received a 
single i.v. infusion of 80 mg of CMS sodium. Colistin and CMS plasma 
concentrations were measured at 13 time points up until 18h post dose. Indi-
vidual body weights, glomerular filtration rates and urinary flow rates were 
available from the published data; other physiological parameters were fixed 
to literature values. Plasma concentration predictions were performed using 
the same design as the published study and with all scaling models for which 
parameter uncertainty had been found reasonable. If Model C (no scaling) 
was retained, CLnr-coli would be set to the CLnr-coli estimated in baboons, 
scaled by the ratio of the mean body weights of both species to the  
-0.25 power. The adequacy of median profile predictions was assessed based 
on 200 datasets simulated including IIV, RUV and parameter uncertainty. 

 
Figure 10. Schematic representation of the WBPBPK model. Qtissue: physiological 
regional blood flow; Vtissue: physiological volume; Kp-tissue: tissue-to-plasma partition 
coefficient; CLr: renal clearance; CLrea: reabsorption clearance; UFR: urinary flow 
rate; GIT: gastro-intestinal tract. 
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Model prespecification 
The previous subsections focused on parameter uncertainty as a key compo-
nent of decision-making. A further layer of uncertainty which needs to be 
taken into account for decision-making, but is often neglected, is model un-
certainty. To be used as primary analysis in confirmatory trials, pharmaco-
metric models need to be prespecified, i.e. the model needs to be decided 
prior to data analysis and no data-driven model building is allowed. Note 
that this work focuses only on the uncertainty of the structural part of the 
model. Model uncertainty also exists on the random effects and residual 
error models, but flexible models covering a wide range of possible shapes 
(e.g. Box-Cox distributions, dTBS) are more common for these aspects than 
for the structural model. In addition, in the considered cases the impact of 
the IIV and RUV models was relatively limited, which is why only structural 
model uncertainty was considered. 

Principle of model-averaging 
Model-averaging80 can be used as one way of addressing model uncertainty 
for a prespecified analysis. The principle of model-averaging is to conduct 
the analysis using a number Mav of prespecified models, instead of using a 
single model. First, each model is fitted separately to the data. Then, model 
predictions are computed as the weighted average of the predictions of each 
model using weights based on the respective fit of each model to the data. 
Hypothesis testing can be carried out on the endpoint to test (for example 
blood pressure reduction at the end of the trial), which is expressed as the 
weighted sum of the estimates from the different models: 

δ�𝑠𝑠𝑎𝑎 =  � 𝑤𝑤�𝑠𝑠

𝑠𝑠=𝑀𝑀𝑠𝑠𝑎𝑎

𝑠𝑠=1

δ�𝑠𝑠 
Eq. 22  

where δ�𝑠𝑠𝑎𝑎 is the model-averaged endpoint, 𝑤𝑤�𝑠𝑠 is the estimated weight for 
model m and δ�𝑠𝑠 is the endpoint estimated with model m. The uncertainty 
around the model-averaged estimate can be obtained similarly to single 
model estimates, based on the covariance matrix, bootstrap or SIR. The 
workflow of a model-averaged analysis is provided in Figure 11. 

Model-averaged test for QT prolongation assessment 
Model-averaging was first applied in the context of thorough-QT (TQT) 
studies. TQT studies are cross-over or parallel studies aiming at detecting a 
drug’s potential for prolonging the QT interval. TQT studies typically in-
volve four arms: placebo, therapeutic and supra-therapeutic dose of the test 
drug, and a positive control. Drug concentrations and QT intervals are meas-
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ured simultaneously at N time points post-dose, and the QT interval is also 
measured at M time points pre-dose. The QT intervals are corrected for heart 
rate (QTc) with one of various possible correction methods (e.g. 
Fridericia’s81, Bazett’s). 

 

 
 
Figure 11. Workflow of a model-averaged analysis. 

Concentration-response analysis of TQT studies uses data from all study 
arms except the positive control, which is only used to validate the sensitivi-
ty of the QT measurement method. The corrected QT interval (QTc) is typi-
cally assumed to depend on a function of clock time (circadian rhythm) and 
drug concentrations as expressed in Eq. 23. 

𝑄𝑄𝑇𝑇𝑄𝑄𝑘𝑘𝑠𝑠𝑖𝑖 = 𝑝𝑝𝑖𝑖 + 𝜗𝜗𝐶𝐶𝑘𝑘𝑠𝑠𝑖𝑖  +  𝜂𝜂𝑘𝑘𝑠𝑠 + 𝜀𝜀𝑘𝑘𝑠𝑠𝑖𝑖  Eq. 23  

where the subscript k indicates the subject, l the treatment arm (l = high or 
low) and t the time point at which the observation was made. The N fixed 
effect parameters pt describe the circadian effects separately for each time 
point. The slope ϑ is also regarded as a fixed effect. Cklt corresponds to the 
individual observed drug concentrations. The random subject effects ηkl de-
scribe the between subject variability. They are assumed to be independent 
across subjects and normally distributed with mean 0 and variance ω2. The 
εklt describe the residual noise and are assumed to be normally distributed 
random variables with mean 0 and variance σ2, which are independent of the 
ηkl, and independent within and between subjects. 
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Here we use change from mean individual baseline in QTc (ΔQTc) as prima-
ry endpoint (Eq. 24). 

𝛥𝛥𝑄𝑄𝑇𝑇𝑄𝑄𝑘𝑘𝑠𝑠𝑖𝑖 = 𝑝𝑝′𝑖𝑖 + 𝜗𝜗𝐶𝐶𝑘𝑘𝑠𝑠𝑖𝑖  + 𝜂𝜂𝑘𝑘𝑠𝑠′ + 𝜀𝜀𝑘𝑘𝑠𝑠𝑖𝑖 Eq. 24  

where p’t are derived from Eq. 23. The random subject effects η’kl are as-
sumed normally distributed with mean 0 and with variance 1/M σ2, which is 
a fraction of the residual variability of the εklt. Under this model the ΔQTc 
observations are independent across subjects, and within subjects there is a 
compound symmetric correlation structure with all variance terms equal to 
(1+1/M) σ2 and all covariance terms equal to 1/M σ2. The linear drug effect 
concentration-response model can be embedded in a more general class of 
models (Eq. 25) where f is a monotonically increasing function with f(0) = 0. 

𝛥𝛥𝑄𝑄𝑇𝑇𝑄𝑄𝑘𝑘𝑠𝑠𝑖𝑖 = 𝑝𝑝′𝑖𝑖 + 𝑓𝑓(𝐶𝐶𝑘𝑘𝑠𝑠𝑖𝑖)  + 𝜂𝜂𝑘𝑘𝑠𝑠′ + 𝜀𝜀𝑘𝑘𝑠𝑠𝑖𝑖 Eq. 25  

In the context of concentration-QT analysis, a mean increase of ΔQTc of at 
least 10 milliseconds (ms) over placebo at the mean over the individual max-
imum concentrations is regarded to be a potential safety risk82. This can be 
formalized for dose group l via the hypotheses stated in Eq. 26. 

𝐻𝐻0: 𝑓𝑓(𝛾𝛾𝑠𝑠𝑠𝑠𝑚𝑚,𝑠𝑠)  ≥ 10 𝑚𝑚𝑚𝑚   𝑣𝑣𝑒𝑒𝑣𝑣𝑚𝑚𝑢𝑢𝑚𝑚    𝐻𝐻1: 𝑓𝑓(𝛾𝛾𝑠𝑠𝑠𝑠𝑚𝑚,𝑠𝑠) < 10 𝑚𝑚𝑚𝑚    Eq. 26  

where 𝛾𝛾𝑠𝑠𝑠𝑠𝑚𝑚,𝑠𝑠 is the geometric mean over the individual maximum concentra-
tions. Three estimators of 𝑓𝑓(𝛾𝛾𝑠𝑠𝑠𝑠𝑚𝑚,𝑠𝑠) were investigated: a parametric linear 
estimator �̂�𝜗𝛾𝛾�𝑠𝑠𝑠𝑠𝑚𝑚,𝑠𝑠, a nonparametric estimator 𝑓𝑓(𝛾𝛾�𝑠𝑠𝑠𝑠𝑚𝑚,𝑠𝑠) based on I-splines83, 
and a model-averaged estimator defined in Eq. 27. 

𝜋𝜋�  𝜗𝜗 �𝛾𝛾�𝑠𝑠𝑠𝑠𝑚𝑚,𝑠𝑠  + (1 − 𝜋𝜋�)𝑓𝑓 �(𝛾𝛾�𝑠𝑠𝑠𝑠𝑚𝑚,𝑠𝑠) Eq. 27  

The data-driven weights 𝜋𝜋� were adapted from the global Mean Integrated 
Square Error (MISE) weights from Yuan et al.84 to the concentration-
response context. Local MISE weights84 and weights based on the Bayesian 
Information Criterion (BIC85) were also investigated. The two-sided 90% CI 
used for hypothesis testing were obtained via bootstrap (N = 999 samples). 

 
Simulation study 
Parallel group studies including a placebo arm, a therapeutic dose test drug 
arm and a supra-therapeutic dose test drug arm were simulated in order to 
evaluate the performance of the model-averaged test. The study design was 
identical to the real data example presented in the next paragraph. QTc were 
simulated according to Eq. 23 using values estimated from the real data, 
with individual concentrations simulated based on a two-compartment PK 
model with first-order absorption and first-order elimination. Four simula-
tion settings were varied: noise level, sample size, drug effect model and 
drug effect size (Table 7). 1000 datasets were simulated for each combina-
tion of the different settings. Data analysis was performed with the three 
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estimators presented above. Nonparametric estimators require particular 
settings to be chosen. In the case of I-splines, a knot sequence, correspond-
ing to a vector of concentrations, needs to be defined. The knot sequence 
governs the number of splines used and the intervals on which each spline is 
defined. Based on a small pilot study, knot sequences were chosen to be 
5 knots (for 50 subjects/arm) and 10 knots (for 100 subjects/arm) placed at 
percentiles of the observed concentration data. Type I error, power, bias in 
the predicted endpoint and weights were investigated for each estimator. 

Table 7. Summary of simulations settings  

Setting Values  
Noise level (standard deviation) 3.6, 7.5 and 15 ms (low/middle/high) 
Sample size 50 and 100 subjects/arm 
Drug effect model linear, Emax, sigmoid Emax and quadratic 
Drug effect size at 𝛾𝛾𝑠𝑠𝑠𝑠𝑚𝑚,ℎ𝑖𝑖𝑖𝑖ℎ 7, 8, 9 and 10 ms 
 
Real data example 
The real data consisted of a TQT study carried out in 239 male healthy vol-
unteers according to the Declaration of Helsinki. The subjects received either 
a single oral dose of placebo, a therapeutic or a supra-therapeutic, 3-fold 
higher dose of the test drug. QT intervals were measured at three time points 
pre-dose (-25, -24 and -23h) and eight time points post-dose (1, 2, 3, 4, 5, 8, 
12 and 24h). A total of 1912 post-dose observations were available. Heart 
rate correction had been done according to Fridericia’s formula. Estimated 
QT prolongations at 𝛾𝛾𝑠𝑠𝑠𝑠𝑚𝑚,ℎ𝑖𝑖𝑖𝑖ℎ were compared between the three estimators 
using 10 percentiles-based knots for the nonparametric estimator. 

Model-averaged test for rheumatoid arthritis trials 
Model-averaging was also applied in the context of efficacy confirmatory 
trials in rheumatoid arthritis. Considered trials were two-arm parallel studies, 
where American College of Rheumatology 20 (ACR20)86 assessments were 
taken at 2, 4, 6, 8, 12, and 24 weeks. All patients were non-responders at the 
start of the study. They were treated either with a new or with a reference 
product (standard of care) during the entire study length. The endpoint to test 
was set to the proportion of ACR20 responders at week 24. Whether the new 
treatment was different from the reference, i.e. whether the responder rate 
difference between the two products was different from 0, was formalized 
via the hypotheses stated in Eq. 28.  

𝐻𝐻0: 𝑝𝑝1 − 𝑝𝑝0  = 0   𝑣𝑣𝑒𝑒𝑣𝑣𝑚𝑚𝑢𝑢𝑚𝑚    𝐻𝐻1: 𝑝𝑝1 − 𝑝𝑝0  ≠ 0 Eq. 28  

where p1 is the responder rate in the treatment group and p0 is the responder 
rate in the reference group. Estimates of p1 and p0 were obtained via classical 
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analysis, single model analysis and model-averaged analysis as detailed in 
the next paragraphs. The null hypothesis was rejected (i.e. a difference con-
cluded) when the 95% CI of the responder rate difference excluded 0. 
 
Classical analysis 
For the classical analysis, only the ACR20 data at week 24 was utilized. The 
ACR20 status was assumed to be a binomial variable. �̂�𝑝1 and �̂�𝑝0were esti-
mated as �̂�𝑝𝑠𝑠 = 𝑑𝑑𝑠𝑠/𝑁𝑁𝑠𝑠, where Yl is the number of patients meeting the ACR20 
criterion in group l and Nl is the number of patients in group l (l = 1 treat-
ment, l = 0 reference product). The asymptotic 95% CI around the responder 
rate difference was computed using Eq. 29, where 𝑧𝑧97.5 is the 97.5th quantile 
of the normal distribution. 

�(�̂�𝑝1 − �̂�𝑝0) ± 𝑧𝑧97.5�
�̂�𝑝1(1 − �̂�𝑝1)

𝑁𝑁1
+
�̂�𝑝0(1 − �̂�𝑝0)

𝑁𝑁0
� 

Eq. 29  

 
Single model longitudinal analysis 
The framework used for the longitudinal analysis of the ACR20 data was 
first-order Markov mixed-effects modeling87. The ACR20 status was de-
scribed by two states, responder and non-responder (Figure 12). At each 
visit, individuals could move from one state to the other according to transi-
tion probabilities which depended on their current state. 

 
Figure 12. Markov model for the ACR20 response, adapted from Lacroix et al87. 
p00 corresponds to the probability of staying a non-responder, p10 of becoming a 
responder, p01 of becoming a non-responder, and p11 of staying a responder com-
pared to the previous visit.  

A generic model for the transition probabilities is displayed in Eq. 30. 

�
𝑙𝑙𝑙𝑙𝑔𝑔𝑙𝑙𝑡𝑡�𝑝𝑝10,𝑖𝑖,𝑘𝑘� = 𝛽𝛽0 + 𝛽𝛽1𝑇𝑇𝑅𝑅𝑇𝑇𝑖𝑖 + (𝛽𝛽2 + 𝛽𝛽3𝑇𝑇𝑅𝑅𝑇𝑇𝑖𝑖) log(𝑡𝑡𝑘𝑘 − 𝑡𝑡0) +  𝜂𝜂𝑖𝑖
𝑙𝑙𝑙𝑙𝑔𝑔𝑙𝑙𝑡𝑡�𝑝𝑝11,𝑖𝑖,𝑘𝑘� = 𝛽𝛽′0 + 𝛽𝛽′1𝑇𝑇𝑅𝑅𝑇𝑇𝑖𝑖 + (𝛽𝛽′2 + 𝛽𝛽′3𝑇𝑇𝑅𝑅𝑇𝑇𝑖𝑖) log(𝑡𝑡𝑘𝑘 − 𝑡𝑡0) + 𝜂𝜂′𝑖𝑖

 Eq. 30  

where TRT is the treatment indicator (TRT = 1 treatment, TRT = 0 reference 
product), tk are the visit times, β are fixed effects parameters, ηi and η’i are 
subject-specific random effects defined to capture inter-individual variability 
in transition probabilities. ηi and η’i are assumed to follow normal distribu-
tions with mean 0 and variances ω and ω’, respectively. Transitions were 
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only allowed to happen at tk. p00 and p01 can be derived from p10 and p11, as 
by definition p00 = 1 - p10 and p01 = 1 - p11. 
Model parameters and their uncertainty were obtained through nonlinear 
mixed-effects modeling. The overall responder rates of the treatment and 
reference arms at week 24 were derived by integrating over the random ef-
fects using simulations. The 95% CI around the responder rate difference 
was obtained from the asymptotic variance-covariance matrix of the model 
parameters. 
 
Model-averaged longitudinal analysis 
The proposed model-averaged longitudinal analysis utilized a set of 10 mod-
els (Table 8). The models were variants of the generic model displayed in 
Eq. 30 and differed in the number of parameters estimated (from 4 to 16) as 
well as in the function describing the time course of the transition probabili-
ties (log-linear, linear, quadratic or discrete time). The inter-individual vari-
ability model was identical for all models. BIC-based weights were used to 
compute the model-averaged estimate. 

 
Simulation study 
A high number of studies were simulated according to 12 scenarios, with 
each scenario corresponding to a different data-generating model. Data-
generating models corresponded to the models included in the model-
averaging pool, with the discrete time model used for three scenarios (Sce-
narios 10, 11 and 12). For each scenario, 1000 datasets were simulated using 
three sample sizes: Nl = 100, 300 and 1000 patients/arm. Model parameters 
were chosen to lead to realistic responder rates in the range of 50 to 75% at 
24 weeks for the reference treatment10. Responder rates of the test treatment 
were chosen to be 0%, 5% or 10% higher than the reference treatment. 
Dropout was not included in the simulations. Type I error, power, bias in the 
predicted endpoint and weights were investigated for each analysis. 

Software 
NONMEM46 7.2 and 7.3 aided by the PsN software43 version 3.5.2 and high-
er were used for data simulation and analysis in the work related to residual 
error modeling and parameter uncertainty. R 3.1.288 was used for data simu-
lation and analysis in the work related to model-averaging. In the QT work, 
the lm function was used for the parametric estimator, and the isb function of 
the SVMMaj package as well as the constrOptim function were used for the 
nonparametric estimator. In the rheumatoid arthritis work, the glmer function 
of the lme4 package with the Gaussian quadrature algorithm using 5 support 
points was used for model fitting. RStudio 0.98 using R 3.1.288 and Xpose89 
4.3.3 and higher were used for graphical outputs. 
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Results 

Results will be presented in sequence for each of the three components of 
this thesis work: residual error modeling (Paper I), parameter uncertainty 
(Paper II-V) and model prespecification (Paper VI-VII).   

Residual error modeling 

Performance of dTBS on real data examples 
Improvement of model fit using dTBS as judged by the likelihood ratio test 
was significant for all models, with dOFV ranging from -243 to -7 (Table 9). 
Most models displayed right-skewed residuals (λ < 1) and scedasticity be-
tween additive and proportional on the untransformed scale (Figure 13). 
dTBS parameters were estimated with satisfactory precision in the six mod-
els for which the covariance matrix was available. Results with FOCEI and 
SAEM were similar except for two models (paclitaxel and pefloxacin), for 
which λ estimates indicated higher skewness with SAEM than with FOCEI 
(λ = -0.6 versus 0.15 and -1 versus -0.8 respectively). The direction of the 
estimated skewness remained identical for the two methods. 

Estimating λ and ζ simultaneously was better than estimating only one of 
these parameters for all investigated models but one. Improvement in model 
fit over the original model was seen for six out of 10 models with the Box-
Cox transformation or the power parameter alone. Estimates of λ and ζ dif-
fered depending on whether they were estimated simultaneously or not. This 
confirmed that both parameters were needed to correct simultaneously for 
skewness and scedasticity. 
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Table 9. Estimated error parameters, associated standard errors (SE) and dOFV 
using the dTBS and the t-distribution approaches for the 10 real data examples 

Model 
Orig. 
error 
model 

ε-shk 
(%) 

𝝀𝝀  
(SE) 

ζ  
(SE) 

Sced. 
1-λ+ ζ 

dOFV 
dTBSb 𝝂𝝂 dOFV 

t-dist 

ACTH/ 
cortisol34 comba 2.9 0 (-) 

0 (-) 

0.68 
(0.27)
0.47 

(0.18) 

1.68 
0.53 -86 3 -28 

Cladribine36 comb 15.8 -0.65 
(1.2) 

-0.92 
(1.0) -0.58 -20 5 -36c 

Cyclophos-
phamide/ 
metabolite37 

add / 
comb 5.4 0.85(-) 

0.86(-) 
0 (-) 
0 (-) 

0.15 
0.16 -8.6 9 -2.6 

Ethambutol38 comb 11.8 0.67 
(0.21) 

0.67 
(0.16) 1 -43 3 -100c 

Moxonidine 
PK39 add 11.6 1.5 

(0.07) 
1.6 

(0.08) 1.1 -243 3 -400 

Moxonidine 
PD39 add 11.4 -0.93 

(-) 
-1.1 
(-) 0.84 -14 9 -25 

Paclitaxel40 add 19.3 0.15 
(-) 

-0.25 
(-) 0.6 -22 3 -7.4c 

Pefloxacin41 prop 23.2 -0.79 
(0.61) 

-1.2 
(0.58) 0.59 -21 4.7 -20 

Phenobarbi-
tal42 prop 28.9 1.8 

(0.44) 
0.83 

(0.23) 0.03 -7 ∞ 0 

Prazosin35 prop 11.2 2.4 
(0.17) 

2.5 
(0.16) 1.1 -100 3 -169 

aadditive component fixed; bpresented dTBS results are those obtained with the FOCEI 
method; cstandard estimation of ν impossible, estimated through likelihood profiling; shk: 
shrinkage; Sced.: scedasticity. 

Other model parameters and related precision could change between the 
original and the dTBS model on the fixed effects level and/or the random 
effect level. Changes in goodness-of-fit plots were typically minor, with 
improvements in the distribution of CWRES, NPDE and IWRES residuals 
apparent for models with high dOFV drops. Influence diagnostics showed 
that 64% of individuals benefitted from dTBS within a dataset on average, 
with 14% contributing to the significant part of the OFV drop. The OFV sum 
over the cross-validation datasets was lower for dTBS than for the original 
model for all models but cladribine and pefloxacin, evidencing good predic-
tion properties. dTBS parameter estimates were consistent between the 
cross-validated datasets. The two models showing worse predictive proper-
ties with dTBS were associated with high imprecision on the dTBS parame-
ters. Runtimes were not markedly different between the original and dTBS 
models under identical estimation methods. 
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Figure 13. Simulated residual error distributions (top panel) and standard deviation 
of the residual error variance as a function of the observed data (bottom panel) on 
the untransformed scale for the original and dTBS error models for the 12 endpoints 
of the 10 real data examples. Dotted lines correspond to the original error model and 
solid lines to the dTBS error model. These distributions were obtained through 
simulations using the final dTBS/original estimates. In the top panel, the standard 
deviations of the distributions were calculated based on the medians of the observed 
data. 
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Performance of the t-distribution on real data examples 
Using a t-distribution with estimated degree of freedom instead of a normal 
distribution for the RUV led to significant improvement in model fit for five 
models. When significant, dOFV were large (Table 9), ranging from -400 
to -20. Estimated degrees of freedom 𝜈𝜈 ranged from 3 (the lowest possible 
value, corresponding to the highest heavy tails) to 200 (the highest possible 
value, very close to a normal distribution). The precision of the degrees of 
freedom were not available. For three models, the degree of freedom could 
not be estimated due to instability issues with the LAPLACE method. 
Changes in other model parameters were observed in a number of cases. The 
impact on individual plots was marked for some models, such as moxonidine 
PK. Improvements in the distribution of the residuals could be observed, as 
exemplified in Figure 14. Influence diagnostics showed that 71% of individ-
uals within a dataset benefitted from the t-distribution on average, with 
around 29% responsible for the significant part of the OFV drop. 

 
Figure 14 CWRES, NPDE and IWRES QQ-plots for the original and t-distributed 
error models in the prazosin example. Dark circles correspond to the final  
t-distribution model, light circles to the original model. Sample quantiles are com-
pared to the theoretical quantiles of a standard normal distribution for the original 
model and to that of a standard normal distribution (NPDE) or a t-distribution with 
3 degrees of freedom (CWRES, IWRES) for the t-distributed error model. 
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Simulation results 
With dTBS, λ estimates were unbiased for the additive-on-log scenario with 
FOCEI and for the proportional scenario with SAEM. A downward bias of 
0.13 remained for the additive scenario. The approximate scedasticity 
(1 - λ + ζ) showed no bias, even in the presence of bias in λ. Other model 
parameters were well estimated in all scenarios. Precision on the dTBS pa-
rameters was satisfactory (below 0.25) for the additive-on-log and propor-
tional models, but poor (0.75) for the additive model. The type I error rate 
associated with the estimation of the dTBS parameters was always below the 
nominal level of 5%. 

With the t-distribution, the estimated degrees of freedom of the  
t-distribution when simulated under normality tended towards the upper 
bound of 200, and the type I error rate associated with the estimation of ν 
was close to 0%. 

Parameter uncertainty  
All results pertaining parameter uncertainty will now be presented: the per-
formance of the developed dOFV diagnostic in assessing uncertainty ade-
quacy, the limitations of bootstrap in NLMEM, and the performance of the 
SIR methodology with examples of its application. 

Performance of the dOFV uncertainty diagnostic 
The dOFV diagnostic could detect the departure of an uncertainty estimate 
from the true uncertainty distribution based on differences in dOFV distribu-
tions. The use of the theoretical dOFV distribution as a reference instead of 
the SSE was appropriate in the two real data and the two simulation exam-
ples, as theoretical and SSE dOFV distributions were almost superimposed 
whichever dataset size (Figure 15 and Figure 16). 

Evaluation of bootstrap adequacy in NLMEM 
Bootstrap dOFV distributions deviated clearly from the theoretical dOFV 
distributions in the real data examples (Figure 15, left panel). Deviations 
were linked in part to sample size: data simulated based on these examples 
showed deviations from the theoretical dOFV distributions at identical sam-
ple size (Figure 15, middle panel), but not at the 8-fold increased sample 
size (Figure 15, right panel). The estimated degrees of freedom for the dif-
ferent dOFV distributions are provided in Table 10. 
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Figure 15. dOFV distribution plots for the two real data examples. Left panels pro-
vide bootstrap dOFV distribution for the real data (blue), the theoretical dOFV dis-
tribution (green) and the SSE dOFV distribution (pink). Middle and left panels pro-
vide bootstrap dOFV distributions for the simulated datasets of equal and 8-fold 
increased size (colors), as well as the theoretical dOFV distribution (black solid 
line). Pheno.: phenobarbital, Pef.: pefloxacin. 

Figure 16. dOFV distribution plots for the two simulation examples. Grey shaded 
areas represent the range of dOFV curves for n=100 bootstraps, with the theoretical 
dOFV distribution superimposed (solid black line). One panel corresponds to one 
simulation example and dataset size. Sim: simulation, pat.: patients.  
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Similar trends were observed for the simulation examples: the range of boot-
strap dOFV distributions decreased with increasing dataset size, and ap-
proached more and more the theoretical dOFV distribution (Figure 16). Dif-
ferences in dOFV distributions could be linked to differences in CI based on 
the results of the simulations examples. Bootstrap coverage was always sat-
isfactory for fixed effects, but deviations from the expected coverage were 
observed for random effects at the lowest sample size (coverage between 
0.70 and 0.80 instead of 0.90) and to a lesser extent at the middle sample 
size (coverage around 0.85). IIV distributions with bootstrap appeared shift-
ed down compared to SSE at low sample sizes (Figure 17). Looking at 95% 
CI, bootstrap underestimated medians by 20-25%, upper confidence bounds 
by up to 50% and lower confidence bounds by 5%. 

Table 10. Degrees of freedom (median [range]) of the dOFV distributions for the 
real data and simulation examples  

Real data  Npar.  Df original Df sim 1x Df sim 8x 
Phenobarb.42 7 11.4 8.81 [6.86, 14.3] 7.35 [6.45, 8.45] 
Pefloxacin41 10 16.5 11.3 [8.48, 14.0] 10.0 [9.78, 10.9] 

Simulation  Npar Df 20-4 Df 50-4 Df 200-4 
Simulation 1  5 6.25 [4.32, 10.6] 5.48 [4.10, 7.15] 5.07 [4.42, 5.94] 
Simulation 2 7 8.39 [5.74, 14.4] 7.55 [6.22, 9.93] 7.15 [6.24, 8.08] 
Phenobarb.: Phenobarbital; Npar: Number of estimated parameters. 

 
Figure 17. Comparative CI bounds of the bootstrap and of the reference (SSE) at 
different confidence levels for the IIV of the PD simulation example. Values were 
normalized by the true simulation value. Pat.: patients; obs.: observations. 
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Performance of the 1-step SIR on simulated data 
In the simulated PK and PD examples, coverage with SIR was similar to 
coverage with the covariance matrix when using the latter as proposal distri-
bution (Figure 18). Most parameters displayed suboptimal coverage at low 
sample sizes, especially IIV for which coverage rates were around 85% in-
stead of 95%. Coverage was satisfactory at the highest sample size.  

It was however apparent from the diagnostic plots that SIR settings were 
not fully appropriate: the proposal dOFV distribution was too narrow, i.e. 
below the reference chi-square, and the M/m ratio was too low, i.e. the tem-
poral trends plots displayed downward trends. SIR settings using inflations 
of the proposal distribution by 3, 2 and 1.5 for sample sizes of 20, 50 and 
200 respectively proved appropriate. SIR results using these settings were 
improved, with the coverage of IIV CL and IIV ED50 only remaining below 
its expected value at the lowest sample size.  

Performance of the 1-step SIR on real data 
For the three real data examples, the 1-step SIR procedure starting from the 
covariance matrix with an M/m ratio of 5 produced satisfactory results based 
on the developed diagnostics: the dOFV distributions of the SIR resamples 
were below the chi-square distribution and the temporal trends plots dis-
played no trends. Comparative parameter 95% CI obtained with the covari-
ance matrix, SIR, bootstrap and LLP for the moxonidine example are pre-
sented in Figure 19. All methods provided similar CI for fixed effects with 
symmetric CI. The 95% CI of KA and lag-time (TLAG) varied between 
methods: they were narrowest and asymmetric with SIR and LLP, symmetric 
with the covariance matrix and widest and most asymmetric with bootstrap. 
Asymmetry was also marked for IIV and inter-occasion (IOV) parameters 
with SIR, LLP and bootstrap. RUV uncertainty was lowest for SIR and LLP, 
with a low degree of asymmetry for all methods. The phenobarbital and pe-
floxacin examples showed similar trends. In terms of runtime, the covariance 
matrix was the fastest method, followed by LLP, SIR and bootstrap (e.g. 14s, 
15min, 1h and 2h respectively in the moxonidine case).  

The real data examples were also used to investigate the impact of SIR 
settings, i.e. of M/m ratio and proposal distribution. The minimum M/m ratio 
necessary for SIR results to be considered final was different in the three 
investigated examples: it was found to be 6 for moxonidine, 4 for pefloxacin 
and 2 for phenobarbital. The necessary ratio was lower the closer the pro-
posal distribution was to the chi-square distribution. The proposal distribu-
tion was found to have a profound impact on SIR results: inflations of the 
covariance matrix performed well, while deflations performed badly. Diag-
nostic plots with the deflated proposals showed proposal dOFV distributions  
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Figure 18. Coverage with SIR is as good as or better than coverage with the covari-
ance matrix. The squares represent the observed 95% coverage for the parameters of 
the two simulation examples with SIR (red) and with the proposal distribution 
(green). The horizontal error bars represent the 95% CI around the observed cover-
age (500 simulated datasets per example and dataset size). SIR was performed both 
with the default workflow (“no inflation” panels: covariance matrix as proposal 
distribution and M/m = 5) and with an optimized workflow (“inflation” panels: co-
variance matrix inflated by 3, 2 and 1.5 as proposal distributions for the datasets 
with 20, 50 and 200 individuals respectively and M/m = 5) 
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below the reference distribution and an exhaustion of samples in the tem-
poral trends plot even at the highest M/m ratio of 10. The developed SIR 
diagnostic plots were able to distinguish between appropriate and inappro-
priate settings in all cases. The degree of freedom of the dOFV distribution 
proved a good indicator of stable SIR results, as similar degrees of freedom 
corresponded to similar parameter RSE and CI bounds. 

 
Figure 19. Comparative 95% CI of the moxonidine model parameters between four 
uncertainty methods: covariance matrix (COV, green), sampling importance 
resampling (SIR, red), log-likelihood profiling (LLP, blue) and bootstrap (BOOT, 
violet). Vertical error bars represent the 95% CI and the points represent the median 
of the uncertainty distributions. All random effects are on the variance scale. 

Performance of the 5-step SIR on real data 
Based on the results on SIR settings just presented, an improved 5-step SIR 
procedure was developed and tested on 25 NLMEM. For 20 models, SIR 
was started from the model’s covariance matrix, and for 5 models SIR was 
started from a limited bootstrap (200 samples). For the models starting from 
the covariance matrix, inflation by 1.5 or above was required in half the cas-
es, as indicated by dOFV distributions of the initial proposal distribution 
partly of fully below the reference chi-square. SIR convergence was 
achieved after 3 iterations on average (Figure 20). Two models (PD8 and 
PD15) needed 7 and 11 iterations to converge, respectively. One model 
(PD1) did not converge and displayed a degree of freedom oscillating above 
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the total number of estimated parameters. Another model (PD11) stabilized 
at a degree of freedom above the total number of estimated parameters. Final 
degrees of freedom of the SIR dOFV distribution were on average 20% low-
er than the total number of estimated parameters. The median degrees of 
freedom of the proposal distributions were 1.3-fold higher than the total 
number of estimated parameters for the covariance matrices and 4-fold high-
er for the limited bootstraps. 

 
Figure 20. Convergence of the 5-step SIR over the 25 investigated models as repre-
sented by the estimated degree of freedom of the SIR resamples distribution at each 
iteration, normalized by the total number of estimated parameters of each model. 
The normalized degree of freedom at the 0th iteration is the degree of freedom of the 
informed proposal distribution (covariance matrix or limited bootstrap). Boxplots 
represent the median, first and third quartiles of the degree of freedom during the 
proposed 5-step procedure, of which the 5th and last iteration is indicated by the 
vertical dashed line. The horizontal line represents a degree of freedom equal to the 
number of estimated parameters. 

SIR was generally robust to the initial proposal distribution: results starting 
the SIR procedure from a generic covariance matrix were similar to those 
starting from an informed proposal distribution. RSE and final degrees of 
freedom differed by less than 5% on average between the informed and the 
generic SIR. The greatest discrepancy was seen for the PK1 model, which 
showed an 8-point difference between final degrees of freedom of the gener-
ic and informed SIR. On average 8 iterations were needed for the generic 
SIR to converge.  
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Comparing the 5-step SIR to other uncertainty methods, SIR was 10 times 
faster than bootstrap on average. Note that a faster bootstrap implementation 
has been proposed90, but was not applied here due to the current lack of ex-
perience with this implementation. Differences between uncertainty esti-
mates obtained from SIR, the covariance matrix, bootstrap and SSE were 
highly model- and parameter-dependent. Median RSE and CI widths over all 
model parameters were similar between all methods but the bootstrap, which 
showed greater uncertainty (Figure 21). Regarding the shape of the uncer-
tainty distributions, SIR displayed similar asymmetry to SSE, with CI being 
on average 20% longer on the side of the parameter distribution correspond-
ing to lower values than on side corresponding to higher values. Asymmetry 
was highest with bootstrap and lowest with the covariance matrix. 

 
Figure 21. Distribution of the median (over all parameters) RSE, 95% CI width 
(WIDTH95) and asymmetry (ASYM95) for all models by uncertainty method: SIR, 
covariance matrix (cov), bootstrap (boot) and SSE. 

Performance of SIR for decision-making using a WBPBPK 
model 
The WBPBPK model previously developed in rats was successfully adapted 
to describe the data from the four other species. The three scaling models 
described the data fairly well, with differences mostly marked for the mice 
profiles and in the predicted variability of the data. Table 11 displays clear-
ance-related parameters and their estimated uncertainty obtained with SIR 
for the three scaling models. Estimated RSE were similar between scaling 
models and were considered reasonable, so all three models were retained as 
plausible models to be used for extrapolation to human. 

Median CMS and colistin plasma concentration-time profiles were pre-
dicted in human using Models A, B and C and were compared to the ob-
served data (Figure 22). CMS predictions were in the same range with the 
three models, but their precision differed. They described the data well apart 
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from some discrepancies at early time points, where both the maximum con-
centration and the time at which it occurs were underestimated. Predicted 
colistin profiles differed more markedly between models and were further 
away from the observed data. Models A and B overpredicted late concentra-
tions, while Model C underpredicted late concentrations. Early concentra-
tions were best described by Model B. 

Table 11. CMS and colistin clearance-related parameter estimates by scaling model 

 Model A Model B Model C 

Parameter* 
(unit) 

Typical 
value 

(RSE) 
IIV% 
(RSE) 

Typical 
value 

(RSE) 
IIV% 
(RSE) 

Typical 
value 

(RSE) 
IIV% 
(RSE) 

SlopeCMS 

 (no unit) 1.07 (18) 113 (24) 1.2 (17) 98 (23) 0.88 (14) 130 (12) 

Slopehyd-CMS 
(h-1) 0.153 (13) - 0.134 (23) 37 (37) 0.135 (31) 93 (23) 

EXPhyd-CMS 
(no units) 0.835 (4) - 1.0 (12) 37 (37) 1.07 (18) 93 (23) 

Slopenr-coli  
(h-1) 0.276 (16) 34 (26) 5.09 (19) 16 (34) 

 mice 12.7 (5)  
 rat 1.24 (12)  

rabbit 0.514 (16)  
 baboon 0.198 (12)  

pig 0.503 (17)  

- 

EXPnr-coli 
(no unit) 0.359 (15) 34 (26) 0.99 (6) 16 (34) - - 

IIV: inter-individual variability; RSE: relative standard errors in %. *clearances are expressed as the 
product of a slope multiplied by a constant (volume or filtration rate) to a given exponent. 

 
Figure 22. WBPBPK model predictions of CMS and colistin PK profiles in healthy 
volunteers receiving a single dose of CMS sodium 80 mg through a 1-h i.v. infusion. 
The blue circles represent the observed data, the black line the median of the obser-
vations, the grey shaded area the 95% CI around the median model predictions when 
simulations include IIV, RUV and uncertainty in the estimated parameters. Predic-
tions and observations at 15 and 18h post-dose were omitted for visualization pur-
poses. 
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Model prespecification 
Results pertaining model uncertainty will now be presented. The perfor-
mance of model-averaging approaches as fully pre-specified analysis meth-
ods for confirmatory studies was investigated first in the context of safety 
TQT studies and then in the context of efficacy in rheumatoid arthritis. 

Model-averaged test for QT prolongation assessment 
The proposed model-averaged test for QT prolongation assessment, based on 
the combination of a parametric linear and a nonparametric I-splines estima-
tors using global MISE weights, led to satisfactory type I error control in the 
investigated scenarios (Figure 23). The parametric and the nonparametric 
tests also led to satisfactory type I error control. The nonparametric test dis-
played a percentage of rejections significantly below the nominal level of 
5% in most cases, with the model-averaged test correcting only part of this 
conservatism. Type I error increases were observed for the model-averaged 
and/or nonparametric tests in two scenarios (Emax model, middle and low 
noise, 50 subjects/arm), which may be attributed to the knot selection of the 
nonparametric estimator and will be discussed later. 

 

 
Figure 23. Type I error of the tests based on the parametric estimator, the model-
averaged estimator, and the nonparametric estimator in the investigated scenarios. 
The solid black horizontal line represents the nominal level at 5% and the dashed 
black lines its 95% prediction interval for 1000 simulations ([3.6%; 6.4%]). 
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The power of the model-averaged test was at least as high as the power of 
the nonparametric test, and was considerably higher in some scenarios 
(Figure 24). Under the linear simulation model, the power using the model-
averaged estimator was on average 14% higher than using the nonparametric 
estimator and 14% lower than using the parametric estimator, across all drug 
effects. Power gain was 6.2% on average under the nonlinear simulation 
models. 

 
Figure 24. Power of the tests based on the parametric estimator, the model-averaged 
estimator, and on the nonparametric estimator in the investigated scenarios. Hori-
zontal dotted lines represent 80% power (commonly desired power) and 5% (type I 
error at 10 ms).  

The model-averaged estimator led to small upward, i.e. conservative, bias 
and good precision of the estimated drug-induced QT prolongation at 
𝛾𝛾𝑠𝑠𝑠𝑠𝑚𝑚,ℎ𝑖𝑖𝑖𝑖ℎ. MISE weights attributed to the parametric estimator were highest 
under the linear simulation model (median around 0.5), moderate under the 
sigmoid Emax model (median around 0.25), and lowest under the Emax and 
quadratic models (median around 0.05). 

The three estimators were also applied to the real data example. The esti-
mated drug-induced QT prolongation was 2.2 ms (two-sided 90% CI 
[1.5; 2.8]), 2.5 ms (90% CI [1.9; 3.5]) and 2.7 ms (90% CI [2.0; 3.7]) based 
on the parametric, model-averaged and nonparametric estimators. From Fig-
ure 25, the adequacy of the linear model was questionable. 
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Figure 25. Concentration quantile–ΔΔQTcF plot for the real data example, with 
estimated QT prolongation using the linear estimator (solid black line). Grey points 
represent the data. Black squares with vertical bars denote the observed arithmetic 
means and 90% CI for the baseline and placebo-adjusted QTcF (ΔΔQTcF) within 
each concentration decile, plotted at the median concentration of the decile. The 
horizontal solid black line with tick marks shows the range of plasma concentrations 
divided into deciles. The horizontal dashed black line shows the 10 ms threshold and 
the vertical dashed black line shows the observed geometric mean 𝛾𝛾�𝑠𝑠𝑠𝑠𝑚𝑚,ℎ𝑖𝑖𝑖𝑖ℎ. 

Model-averaged test for rheumatoid arthritis trials 
The second model-averaging approach proposed for efficacy trials in rheu-
matoid arthritis, which consisted of 10 models for ACR20 response weighted 
using BIC weights, showed acceptable type I error rates overall (Figure 26). 
Type I error was slightly elevated in two cases (Scenario 5 and 9, 1000 pa-
tients/arm), one of which was due to simulation noise. Type I error was also 
elevated in one case (Scenario 5, 1000 patients/arm) and two cases (Scenario 
2, 300 patients/arm and Scenario 9, 100 patients/arm) for the single model 
and classical analysis, respectively. 

Power improvements over the classical analysis were marked for seven 
out of the 12 scenarios. Figure 27 displays the power for the three estimators 
under a true drug effect of 5%. The greatest power gains were observed for 
the model with the lowest number of parameters (Scenario 7), going from 
64% with the classical test to 86% with the model-averaged test under a true 
responder rate difference of 5% and 1000 patients/arm.  
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Figure 26. Type I error rates for the classical (empty circles), single-model (full trian-
gles) and model-averaged (full squares) tests for all simulation scenarios. Vertical error 
bars represent the 95% CI around the type I error rates. The horizontal dotted line corre-
sponds to the nominal level of 5%. 

 
Figure 27. Power for the classical (empty circles), single-model (full triangles) and 
model-averaged (full squares) tests for all simulation scenarios under a true drug effect 
of 5%. The horizontal dotted lines correspond to commonly used power targets of 80% 
and 90%. Lines correspond to logistic regression predictions of the power based on log 
sample size for the classical (dotted line), single-model and model-averaged (solid lines) 
analyses.
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The estimated responder rate differences at week 24 were unbiased, except 
for one scenario (Scenario 8) for which differences were conservatively un-
derestimated by 3.3% and 2.2% at 100 and 300 patients/arm under a true 
difference of 10%. Model-averaging led to biased responder rates in some of 
the lowest sample size cases, with a bias between -4.2% and 1.1%. The bias 
was reduced with increasing sample sizes and was below 1% at the highest 
sample size for all scenarios. No bias was observed with the single model 
analysis. Model-averaging weights identified the data-generating model, at 
the latest at the highest sample size, in eight out of the 12 scenarios. In the 
four remaining scenarios (Scenarios 2, 4, 10 and 12), a simpler model was 
assigned higher weight. Increases in sample sizes moved the weight distribu-
tion towards the data generating model, but convergence speed was highly 
scenario-dependent. 
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Discussion 

Discussion points will be presented in sequence for each of the three compo-
nents of this thesis work: residual error modeling (Paper I), parameter uncer-
tainty (Paper II-V) and model prespecification (Paper VI-VII).   

Residual error modeling  
The implementation of the dTBS and t-distribution residual error models for 
NLMEM was successful. dTBS is available as a PsN functionality which can 
easily be applied to models developed using classical error models without 
any modification of the model file. The t-distribution needs to be manually 
coded and makes use of the LAPLACE method, which remains a drawback 
due to the observed instability of this estimation method. These extensions 
of classical error models led to important improvements in model fit and a 
better agreement to the assumptions regarding the residual error model. They 
present the advantage of being capable of handling potentially skewed, het-
eroscedastic and outlying residuals without the need for predefined and sub-
jective exclusion criteria. 

It is recommended to apply dTBS and/or the t-distribution to models ob-
tained through traditional model building as a means to improve the robust-
ness of conclusions drawn from the model. dTBS could be favored under 
potential skewness in the residuals or trends in the scedasticity relationship, 
and the t-distribution under extreme outliers. These approaches could how-
ever be introduced earlier in model building and retained if leading to signif-
icant improvements. The error specific parameters should stay unfixed dur-
ing model building in order to retain flexibility towards subsequent changes 
of other parts of the model. 

Enhancing residual error model compliance will improve both the estima-
tion of and the simulation from NLMEM. Parameter estimated using maxi-
mum likelihood may be biased if the wrong variance model is chosen29, and 
inference using the computed likelihood or standard errors of parameter es-
timates may be invalidated91,92. Similarly, if the normality assumption is not 
verified, maximum likelihood estimation comes back to extended least 
squares93 and resulting estimators and their uncertainty may not be appropri-
ate94. With regards to simulations, the scedasticity will have a high impact on 
model predictions, and may be particularly important when simulating data 
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outside of the range of the observed data. Ignoring skewness will often un-
derestimate variability by simulating less extreme values. 

Assessing improvement on the error model level 
The OFV was used as the main criterion for model improvement under the 
new strategies. The power to detect improvements in the residual error mod-
el was expected to be high, as all observations contribute to this aspect of the 
model. Observed OFV drops using the dTBS or t-distribution approaches 
were indeed often important. On the other hand, model improvement was not 
easily assessed based on commonly used visual goodness-of-fit diagnostics 
specific or unspecific of the residual error. Specific diagnostics such as 
IWRES plots were often confounded by shrinkage. Nonspecific diagnostics 
such as CWRES or VPC were impacted by the interaction of the different 
levels of variability and often showed little overall change. Further diagnos-
tics were thus investigated to assess individual influence and predictive 
properties of the models. For both methods, the majority of individuals bene-
fitted from the new model, but often a low proportion of individuals contrib-
uted to the significant part of the dOFV drop. This was not unexpected given 
that only a limited part of these distributions actually deviates from the nor-
mal distribution. The superiority of the error model for the entire group of 
individuals was nevertheless confirmed by cross-validation in the dTBS 
examples.  

Contrarily to other model parameters which often relate to pathophysio-
logical processes, the residual error aggregates a multiplicity of factors such 
as endpoint type, study design, assay characteristics and model misspecifica-
tion. As a consequence, while the interpretation of the error parameters is 
straightforward at the distribution level, they remain difficult to explain or 
anticipate in a given setting. 

Interestingly, real data examples most improved with the new error mod-
els were similar between dTBS and the t-distribution. Both approaches allow 
individual observations to be further away from model predictions, the dif-
ference being that dTBS allows this to happen in one direction only (i.e. 
more negative or more positive residuals) whereas the t-distribution allows 
both directions (i.e. more negative and more positive residuals). The results 
showed that allowing some type of outlier was beneficial, even if the sym-
metry was misspecified. It is interesting to note that both approaches can 
also be combined. Observed gains at the level of the residual error would 
however need to be balanced with such added complexity. 
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dTBS specificities 
Even if none of the models investigated were chosen because of a suspected 
misspecification of the error model, dTBS led to significant improvement in 
all cases. The impossibility to observe negative endpoints was consistent 
with most models displaying some degree of right-skewness. Left-skewness 
was observed in two rich data examples, possibly as a consequence of ab-
sorption model misspecification. Investigations keeping one of the dTBS 
parameters fixed showed that estimating λ alone corrected for scedasticity 
more than for skewness. This confirmed that the full dTBS approach esti-
mating λ and ζ should always be used. An additional power term, which 
could account for “combined” error models, could be envisaged. However, 
the presented dTBS model is believed to provide sufficient flexibility for 
most applications, which was confirmed by the absence of model improve-
ment when adding a second power term in the examples originally modeled 
with combined error models. 

dTBS parameters could be estimated without bias and with satisfactory 
precision in the proportional and additive-on-log simulation examples using 
the SAEM and FOCEI methods respectively. The additive simulation sce-
nario displayed bias on λ, which could not be corrected but which did not 
impact the type I error or the estimation of other parameter estimates.  

t-distribution specificities 
The t-distribution proved beneficial for five models. A major limitation of 
the application of this model remains its implementation using the  
LAPLACE method, which often led to minimization difficulties. The great-
est OFV drops were observed for degrees of freedom close to the lower 
bound of 3. Individual fits could be largely improved by allowing isolated 
data points to depart more from the predictions.  
 
In conclusion, the models developed in the first part of this work facilitate 
model-building decisions by providing unified, flexible RUV models. These 
models avoid the case-by-case testing of a limited number of traditional 
models, as well as subjective decisions on how to handle outliers. They can 
be used to simulate more realistic real-life data. At last, increased compli-
ance to RUV model assumptions is expected to improve NLMEM properties 
in general. 
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Parameter uncertainty  
After focusing on enhancing model compliance to RUV assumptions, we 
will now discuss the results concerning the diagnosis of, and improved 
methods for, parameter uncertainty estimation. 

Performance of the dOFV uncertainty diagnostic  
The dOFV diagnostic enables to assess whether a given uncertainty estimate 
can be considered adequate, based on whether its dOFV distribution is at or 
below the theoretical dOFV distribution. It can be applied to any method for 
assessing parameter uncertainty, provided parameter vectors can be drawn 
from the proposed uncertainty distribution. Given the importance of parame-
ter uncertainty in decision-making, scrutiny towards uncertainty estimates 
should be enhanced by making the dOFV diagnostic an integral part of mod-
el assessment. 

Two assumptions were made when using the theoretical distribution as a 
reference: that the dOFV distribution of the true uncertainty follows a chi-
square distribution at the investigated sample sizes, and that its degree of 
freedom corresponds to the total number of estimated parameters in 
NLMEM. These assumptions were met in the investigated examples, as the 
SSE distributions overlaid the theoretical distributions in all cases. It remains 
highly questionable whether the degree of freedom would always be equal to 
the number of estimated parameters, notably for more nonlinear or more 
constrained NLMEM (e.g. with parameters bounded by physiological values 
or inclusion criteria). Lastly, note that the dOFV diagnostic is a global test; it 
does not indicate for which parameter(s) the uncertainty is not well de-
scribed. For the bootstrap, parameter-specific diagnostics based on “effec-
tive” sample sizes may be useful, as will be detailed in the next subsection.  

Evaluation of bootstrap adequacy in NLMEM  
Based on the developed dOFV diagnostic, bootstrap proved unsuitable for 
the two investigated real examples and the simulation examples at low sam-
ple size(s). The simulation examples showed that the increase in degree of 
freedom of the dOFV distribution could be linked to too narrow CI. For ex-
ample, a 1.25-fold increase in degree of freedom translated into coverage 
rates of 70% instead of 90% for IIV parameters. As expected, bootstrap ade-
quacy increased with increasing number of individuals. Model misspecifica-
tion also contributed to the higher than expected degree of freedom: the de-
gree of freedom obtained with data simulated using the same design was 
increased to a lesser extent than with the real data. Generalization of these 
results is limited by the investigated models, which were relatively simple 
models featuring a high proportion of random effects. Stratification on the 
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number of observations per individual could have improved bootstrap results 
in the real data examples. However, stratification would not have been 
straightforward due to the heterogeneous distribution of the number of ob-
servations per individual, and could have led to too small subgroups. A fur-
ther limitation of the bootstrap was highlighted in the pefloxacin case, for 
which half the samples displayed estimation problems. dOFV distributions 
as well as uncertainty estimates differed when ignoring problematic runs, 
showing the sensitivity of bootstrap results to the choice of set-up regarding 
the stratification strategy and the computation of the CI. 

The simulation examples enabled to pinpoint the parameters which uncer-
tainty was not well captured by comparing bootstrap CI to SSE CI. IIV un-
certainty appeared underestimated at low sample sizes, whereas the uncer-
tainty of fixed effects was well described. 

Similar increases in degree of freedom were observed for datasets with 20 
individuals and datasets with 70 individuals. Diagnosing a priori in which 
cases bootstrap is inadequate based on sample size proved difficult for 
NLMEM due to the amount and heterogeneity of information contained in 
different individuals. Sample size does not reflect heterogeneity, which aris-
es from unbalanced designs or different individual characteristics such as 
covariates or subject-specific random effects. The number of individuals also 
does not relate to model complexity: using the same dataset, bootstrap may 
be adequate for a simple model, but not for a much more complex model. An 
a posteriori method based on parameter-specific “effective” sample sizes 
was thus developed in this work as a better indicator of bootstrap adequacy. 
The effective sample size represents how many individuals with perfect in-
formation the estimated uncertainty for one parameter corresponds to. Effec-
tive sample sizes N were calculated based on the formulas for the standard 
errors of means (Eq. 31) for fixed effects and the standard errors of vari-
ances (Eq. 32) for random effects.  
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Effective sample size for fixed effects and IIV are expected to be at maxi-
mum the total number of individuals in the dataset. For IOV, the effective 
sample size is at maximum the total number of occasions (i.e. the sum of the 
number of occasions per individual) minus the total number of individuals. 
For RUV, N can be at maximum the total number of observations minus the 
number of individuals and minus the sum of the number of occasions per 
individual. Effective samples sizes for fixed effects and IIV in the real data 
examples were at maximum 30, i.e. less than half the total number of indi-
viduals (Figure 28). 
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Figure 28. Effective sample sizes calculated for selected model parameters of the 
real data and simulation examples based on bootstrap uncertainty estimates. Colors 
correspond to the different examples and dataset sizes. Grey dashed lines correspond 
to the total number of individuals in the different examples. Pheno.: phenobarbital, 
Pef.: pefloxacin, Sim: simulation, pat.: patients. 

Effective sample sizes were on average equal to 0.75-fold the possible sam-
ple size in the simulated PK examples (range: [0.45; 1]), and to 0.59-fold the 
possible sample size in the simulated PD examples (range: [0; 1]). Based on 
the corresponding coverage results, this could indicate that the minimum 
number of effective individuals needs to be at least 45 for bootstrap to be 
adequate. It is important to point out that the concept of effective sample 
sizes was developed here in an exploratory manner and more work is needed 
for this to be used as a decision criterion. 

Performance of the 1-step SIR on simulated data 
The observed bootstrap inadequacy triggered the development of SIR to 
improve parameter uncertainty estimation in NLMEM. The initially devel-
oped 1-step SIR procedure showed satisfactory coverage when starting from 
inflations of the covariance matrix. Necessary inflation factors decreased 
with dataset size, confirming that the adequacy of the covariance matrix 
increased with increasing sample size. SIR diagnostics evidenced that the 
covariance matrix often underestimated parameter uncertainty with simulat-
ed data, contrarily to the real data examples. Underestimation of parameter 
uncertainty by the covariance matrix had been observed previously95. The 
final SIR dOFV distributions overlaid the chi-square distributions in the 
simulation examples, which could indicate that the discrepancies observed 
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between the SIR and the theoretical distributions in the real data examples 
were linked to model misspecification. However, the lower proportion of 
random effects in the simulations could also contribute to the SIR degree of 
freedom being equal to the number of estimated parameters.    

Performance of the 1-step SIR on real data 
The interpretation of differences between parameter uncertainties obtained 
with various methods on real data is not straightforward as the truth remains 
unknown. Thorough comparisons of available methods such as in Don-
aldson96 are lacking in NLMEM. SIR was able to detect expected uncertainty 
asymmetry for variances and nonlinear parameters. SIR results were closest 
to LLP, which was expected as both are based on the likelihood of different 
parameter vectors on the original dataset. However, it is difficult to use LLP 
for simulation as it does not provide full uncertainty distributions. Bootstrap 
results confirmed the presence of asymmetry. Bootstrap CI were generally 
wider than SIR. Bootstrap uncertainty has however been shown earlier to be 
inadequate for the phenobarbital and pefloxacin examples. SIR was thus 
found to provide an adequate estimate of parameter uncertainty in the inves-
tigated real data examples. In terms of runtime, SIR was about twice as fast 
as bootstrap, but runtime gains are not easily generalizable as they will de-
pend on the adequacy of the proposal distribution and the runtime difference 
between OFV estimations and OFV evaluations. 

Performing SIR on the real data examples varying M/m and/or using in-
flations or deflations of the proposal distribution enabled to understand the 
impact of SIR settings and improve their selection. A M/m ratio of 5 was 
sufficient in the investigated cases, and could even have been further re-
duced for two examples, leading to faster runtimes. The developed diagnos-
tics enabled to assess whether M/m was sufficient a posteriori. However, no 
robust quantitative relationship could be established to assess the necessary 
M/m a priori, for example using the difference in degrees of freedom be-
tween the proposal and the reference dOFV distributions. Starting from too 
narrow distributions proved problematic for SIR, as the limited number of 
samples in the tails of the distribution makes the expansion of uncertainty 
very slow. This issue could however be easily identified in the diagnostics. It 
is thus recommended to inflate the proposal distribution instead of increasing 
M/m when the proposal appears too narrow. It is important to note that even 
if only variants of the covariance matrix were used as proposal distributions 
here, a major advantage of SIR is that it can be used with any multivariate 
parametric distribution, i.e. also for models for which the covariance matrix 
is not available. A limited number of bootstrap samples or a generic covari-
ance matrix can easily be used as proposal distribution. Another dimension 
of any multivariate distribution is the correlation between the distributions. 
Similarly to the issue observed with too narrow proposal distributions, SIR 
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could be inefficient at reducing misspecified high correlations, and the con-
sequences of such misspecifications remain unclear97. This could not be in-
vestigated here as high correlations were not observed in the investigated 
examples. It is however advised to reduce correlations when performing 
SIR, or ideally to use parametrizations that minimize such issues98. Lastly, 
the ultimate diagnostic to test whether SIR results are final would be to per-
form a second SIR using the SIR resamples as proposal distribution. Identi-
cal proposal and resamples distributions would confirm that SIR results are 
final. This thought triggered the development of the iterative 5-step proce-
dure discussed below. 

Performance of the 5-step SIR on real data 
The 5-step SIR procedure starting from the covariance matrix or a limited 
bootstrap was satisfactory for 22 out of the 25 NLMEM investigated. SIR 
was globally robust to the choice of initial proposal distribution and thus it is 
recommended to use an informed proposal distribution for runtime gain. 
Inflation was needed in about half the cases when starting from the covari-
ance matrix. This was partly due to the use of the multivariate normal distri-
bution for the first iteration, which was expected to lead to a suboptimal 
description of the uncertainty of random effects. The use of a multivariate 
Box-Cox distribution allowing for parameter-specific asymmetry relaxed 
symmetry constraints in subsequent iterations. Limitations of the Box-Cox 
distribution to approximate nonparametric parameter vectors were some-
times apparent, but it did not seem to hamper SIR efficiency in the investi-
gated examples. It should be noted that multivariate parametric distributions 
impose constraints on the correlation level. This may be problematic in the 
case of high correlations, as it might be difficult for SIR to move away from 
them if they are misspecified. Further refinements of the SIR procedure, 
including more flexible parametric distributions, correlations structures, or 
sampling strategies99 could be envisaged to further improve SIR perfor-
mance.  

SIR proved particularly useful for identifying local minima and estimat-
ing uncertainty in the presence of priors. Limitations of SIR were apparent 
for a model displaying instability in the likelihood estimation and a model 
featuring an on/off parameter, for which the degree of freedom stabilized 
above the number of parameters whichever proposal distribution was used. 
A 31-parameter PK model containing 9 IIV parameters also displayed diag-
nostic plots which failed to identify the exhaustion of samples for IIV pa-
rameters. 

SIR provided median RSE and CI widths relatively similar to the covari-
ance matrix and SSE, which supported the validity of the developed proce-
dure for uncertainty estimation. The fact that SIR provided asymmetry esti-
mates close to SSE showed its improvement over the covariance matrix, 
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which performed well in terms of uncertainty magnitude (RSE ad CI width) 
but not symmetry. Bootstrap also performed well at describing the shape of 
the uncertainty. However, bootstrap led to uncertainty magnitudes markedly 
higher than the other methods, potentially overestimating variability due to 
suboptimal stratification. Estimation issues were relatively common for 
bootstrap and SSE, which in effect restricts the use of these methods. SIR 
seemed to perform better than the other methods based on the estimated de-
grees of freedom. Efforts to link the final degree of freedom with model 
characteristics such as sample size or the proportion of random effects were 
not successful. 

Performance of SIR for decision-making using a WBPBPK 
model 
WBPBPK models play an increasing role in drug development100,101 and the 
developed model was the first interspecies WBPBPK model for a polymyxin 
antibiotic. Interspecies scaling102,103 was performed using literature data to 
account for differences in physiological parameters, and approaches based 
on allometric scaling were used for the drug-dependent clearance parameters 
CLr-CMS, CLhyd-CMS and CLnr-coli. The three evaluated scaling models for  
CLnr-coli based on volume (Model A), volume and maximum lifespan poten-
tial (Model B), and estimation of species-specific CLnr-coli (Model C) per-
formed similarly well for the five animal species. The interspecies scaling 
led to more adequate predictions for CMS than for colistin. Colistin elimina-
tion pathways and protein binding in tissue, which remain poorly under-
stood, appeared to involve processes not adequately described by allometry. 
Parameter uncertainty obtained with SIR was reasonable for all three mod-
els, which were thus retained as potential scaling candidates for the extrapo-
lation to human. It is interesting to note that SIR was particularly indicated 
in the present case, as the covariance matrix was expected to perform badly 
due to the low amount of information contained in the data. Bootstrap could 
not be applied as the uncertainty on parameters related to priors would have 
been underestimated, and LLP would not have been able to simulate parame-
ter vectors needed for the extrapolation to human.  

Using the interspecies WBPBPK model to predict human CMS and col-
istin plasma concentrations taking parameter uncertainty into account 
stressed the strengths and limitations of the model.  Apart from mispredic-
tions in the very early profiles, median CMS profiles in human were relative-
ly well described with the three models, which was not unexpected given the 
good scalability of CMS between animal species. Median colistin profiles in 
human were less well described. Prediction differences between Models A, 
B and C were more marked for colistin than for CMS. Colistin concentra-
tions were predicted in the right range, but changes in concentrations over 
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time were either too rapid or too slow, which was attributed to a mispredic-
tion of CLnr-coli. Despite none of the alternatives being fully adequate, Model 
B presented the best interspecies scaling properties overall. This model could 
be used to optimize lead selection of new polymyxin-like antibiotics based 
on PK properties such as plasma and tissue concentrations for example. It 
could be further refined as additional data becomes available, in particular 
on colistin elimination. 

 
In conclusion, the work on parameter uncertainty enables to decide how 
much an uncertainty estimate can be trusted and provides a new method 
capable of better quantifying the uncertainty linked to a given decision based 
on NLMEM. SIR is applicable to many situations, including cases where 
other methods fail such as small datasets, highly nonlinear models or meta-
analysis104. SIR can support model-building decisions and enable the devel-
opment of more complex models for which uncertainty could not have been 
obtained otherwise. SIR can provide better decisions based on the final mod-
el and endpoints, and is useful for clinical trial simulations where parameter 
uncertainty plays a major role. 

Model prespecification 
The last aspect of uncertainty which was addressed in this work was model 
uncertainty. Two model-averaging approaches were developed and applied 
to safety and efficacy settings of QT prolongation assessment and efficacy in 
rheumatoid arthritis. 

Model-averaged test for QT prolongation assessment 
The model-averaged test based on a parametric linear and a non-parametric 
I-splines estimators weighted by global MISE weights showed operating 
characteristics globally appropriate to be used in the considered TQT con-
firmatory settings. The type I error was satisfactory in a set of realistic simu-
lation scenarios, and power gains compared to the nonparametric estimator 
were observed. The behavior of the model-averaged estimator was impacted 
by three factors: the monotonicity constraint, the selection of knots of the 
nonparametric estimator, and the weighting.  

The nonparametric test appeared very conservative, with type I errors  
often close to 0. Removing the monotonicity constraint on the nonparametric 
estimator led to type I errors much closer to the nominal level. However, 
allowing non monotonically increasing estimators is not possible for real 
data in the considered TQT safety settings, as the estimated QT prolongation 
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at all concentrations below the expected maximum concentration 𝛾𝛾𝑠𝑠𝑠𝑠𝑚𝑚,ℎ𝑖𝑖𝑖𝑖ℎ 
has to be smaller than the prolongation estimated at 𝛾𝛾𝑠𝑠𝑠𝑠𝑚𝑚,ℎ𝑖𝑖𝑖𝑖ℎ.  

The second driver of the results proved to be knot selection, which re-
mains an area of research for I-splines. Other nonparametric estimators such 
as smoothing splines105 provide more easily optimized settings, but were not 
as easy to constrain and to use under the specified correlation structure. The 
knot strategy used here performed differently across scenarios, as evidenced 
by the fact that type I error and bias did not always decrease, and power did 
not always increase, over increasing information level. Suboptimal knot 
selection was mostly conservative, but could also lead to type I error in-
creases in isolated cases. Observed type I error elevations with the model-
averaged test were decreased when optimizing knot selection, from 9.5% to 
5.8% in one scenario using 8 knots instead of 5 (Emax, low noise, 50 sub-
jects/arm), and from 7.5% to 4.9% in one other using 7 knots instead of 5 
(Emax, middle noise, 50 subjects/arm). Ideally, an automated algorithm for 
knot selection should be developed, but in real data settings exploratory sim-
ulations under plausible models a priori combined with sensitivity analyses 
a posteriori could suffice for satisfactory knot selection.  

The last factor impacting the behavior of the model-averaged estimator 
was the weighting. MISE global weights were chosen because of their theo-
retical properties of converging to 1 in probability when the parametric mod-
el is true and to 0 when it is not. Convergence seemed slow, as median 
weights attributed to the linear model were around 0.50 and did not increase 
much over sample size. This limited the gain in power that could be 
achieved by the model-averaged estimator. Faster converging weights such 
as BIC were investigated, but they failed to disqualify the linear model in 
some of the nonlinear scenarios, leading to poor type I error control. 

A particularity of the method was the prespecified structure of the covari-
ance matrix of the residual error between individual QT measurements. This 
assumption appeared reasonable for the considered real data example. More 
complex covariance structures could however be envisaged. 

Lastly, it should be stressed that the proposed method is based on concen-
tration-response analysis and as such is not limited to TQT studies. It is also 
applicable to early phase data such as single and multiple ascending dose 
studies, which may replace TQT studies for QT prolongation assessment in 
the near future106,107. 

Model-averaged test for rheumatoid arthritis trials 
The model-averaged analysis utilizing a pool of 10 Markov-type models 
weighted by BIC proved a valid alternative to the classical end-of-trial anal-
ysis for superiority testing in rheumatoid arthritis. Type I error was con-
trolled for 34 out of the 36 simulation cases (12 scenarios of three sample 
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sizes each) with the classical and model-averaging approaches, whereas it 
was controlled for 35 cases for the single-model analysis. This being a simu-
lation-based assessment, we expected one of the 36 tested cases to provide a 
higher than expected type I error. The 2% elevation in type I error for Sce-
nario 9 at 1000 patients/arm (at 7% instead of 5%) could not be explained 
after running additional simulations.  

The model-averaged test led to important increases in power over the 
classical analysis for Scenarios 1-7. Relative power gains were 30% on aver-
age. They differed heavily between models, the models with the lowest 
number of parameters typically showing the highest power gains. Power 
gains were often similar between the single-model and the model-averaged 
tests. Greater power with the model-averaged test was seen when a model 
simpler than the data-generating model featured high weights, which is a 
potential advantage of model-averaged procedures as long as it is not 
achieved at the expense of detrimental bias. The absence of power gains for 
Scenarios 10-12 was not surprising, as the data-generating models were not 
continuous functions of time. However, the reasons for the absence of power 
gains for Scenarios 8 and 9 remain unclear. 

At high sample sizes, BIC weights identified the true data-generating 
model (by attributing the highest weights to this model) in eight out of 12 
scenarios. Both model structure and model parameter values influenced the 
attributed weight. The inclusion of Model 10 (categorical time) as a safe-
guard mechanism against model misspecification was not always guaran-
teed. This model came with many parameters and thus a high penalty, which 
could only be overcome if the fit of all other models was very poor. The 
choice of BIC was motivated by its link with the probability of the model 
being correct given the observed data. Model averaging can also be per-
formed using other weights, such as the Akaike Information Criterion 
(AIC)80. AIC weights may lead to greater power gains due to the selection of 
simpler models but do not converge to the data-generating model, which was 
why BIC was preferred here. 

Together with the weighting strategy, the selection of the type and the 
number of models to include in the pool plays a major role in model-
averaging. Published models of ACR20 response consist of Markov 
models87, logistic regression108 and latent-variable approaches109. First order 
Markov models, some falling back to logistic regression, were used here. 
Extensions of the model pool to second order Markov elements or latent-
variable models could be envisaged to span a greater range of models and 
further reduce the risk of model misspecification. Regarding the number of 
models to include, a balance need to be struck between spanning a wide 
range of possible models to avoid model misspecification and limiting the 
number of models to maximize power110 and ease of use. Published model-
averaging analyses typically include 2-20 nested or non-nested models111-114. 
Unfortunately, few investigations on the impact of model pool exist in litera-



 79 

ture113. As a consequence, the set-up of model-averaging methods remains a 
case-by-case matter. The models included here were thought to cover a wide 
enough range of both plausible and stress-case structures while avoiding 
overparametrization. 

 
In conclusion, the fully prespecified model-averaged analyses developed in 
the last part of this thesis enable appropriate hypothesis testing for two types 
of confirmatory trials, for which a need for more efficient methods is pre-
sent. Observed power gains translate into a reduction in the number of pa-
tients needed to perform such trials. Because type I error control often can-
not be theoretically demonstrated for NLMEM, it is understood that from a 
regulatory perspective the acceptance of such methodologies will require 
case-by-case extensive simulations. The results presented here can neverthe-
less inform the development of similar approaches in other settings with 
regards to the key questions of the selection of models and the choice of 
weights. 
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Conclusion 

In this thesis, different aspects of pharmacometric model-based analysis 
were scrutinized in order to enhance the use of pharmacometric models for 
decision-making in clinical drug development. Methods improving the de-
scription of the residual error model and the evaluation of parameter uncer-
tainty were developed. These methods extended currently available tools 
with flexible models particularly suited for NLMEM. Model-averaging ap-
proaches were developed to address model uncertainty and comply with 
regulatory requirements regarding the prespecification of analysis methods 
in confirmatory settings. The performed work facilitates the application of 
pharmacometric analysis to key decision points such as confirmatory trials, 
and could hence improve the efficiency of drug development.  

 
In particular: 

 
• Residual error models were extended to be able to account for 

skewed, heteroscedastic and heavy-tailed residuals. The dTBS 
and/or t-distribution strategies are easy to use and increase model 
compliance to distributional assumptions, thus improving model 
appropriateness.  
 

• The dOFV distribution plot was developed as a diagnostic for the 
adequacy of parameter uncertainty estimates. Based on this diag-
nostic, the performance of bootstrap appeared limited at sample 
sizes common in NLMEM. 

 
• An alternative method for estimating parameter uncertainty, SIR, 

was developed. SIR was applied to a wide range of models and 
data and proved a powerful and easy-to-use method for uncertain-
ty estimation in NLMEM. 
 

• Two fully prespecified methods based on model-averaging were 
developed, one for the assessment of QT prolongation and one for 
efficacy in rheumatoid arthritis. The proposed methods provided 
satisfactory type I error control and higher power than the stand-
ard methodologies.  
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