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Longitudinal data

Longitudinal or repeated measurements

Several observations per patient across time

Within and between subject variability

⇒ Non Linear Mixed Effect Models

Estimation of parameters of the model: by Maximum Likelihood
⇒ No analytical form of the likelihood
⇒ Specific software available
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Design

How to design these studies ?

Number of subjects
Number of points per subject

Objective: predict the precision in estimation
⇒ Relative Standard Error (RSE)
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FIM in NLMEM

Instead of performing clinical trial simulations
⇒ Evaluation of the Fisher Information Matrix (FIM)

Inverse FIM = lower bound of the variance-covariance matrix of
any unbiased parameters estimator (Cramer-Rao inequality)

FIM ⇒ Evaluate and optimize designs

In NLMEM: no analytical form

⇒ First-order (FO) linearization
Performs very well, but cannot applied to:

Complex nonlinear models
Discrete data

Mentré et al. Biometrika 84, 429–442 (1997).
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Nonlinear mixed effect models

For continuous data:

yi = f(g(µ, bi), ξi) + εi

For discrete data:

p(yi, ψ|bi) =
ni∏
j=1

h(yij, g(µ, bi), ξi)

with
yi = (yi1, . . . , yini)

T response for individual i (i = 1, . . . , N)
f , h structural model
ξi elementary design for subject i
g individual parameters vector, function of µ and bi
µ vector of fixed effects
bi vector of random effects for individual i, bi ∼ N (0,Ω)

εi vector of residual errors, εi ∼ N (0,Σ) and Σ diagonal matrix

ψ vector of all parameters, ψ = (µ,Ω,Σ)
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Fisher Information Matrix (FIM)

Population FIM:

M(ψ,Ξ) =

N∑
i=1

M(ψ, ξi)

with Ξ population design (Ξ = (ξ1, . . . , ξN )T)

Individual FIM:
M(ψ, ξ) = E

(
∂ log(L(y,ψ))

∂ψ
∂ log(L(y,ψ))

∂ψ

T)
with the likelihood:
L(y, ψ) =

∫
b

p(y|b, ψ)p(b)db

where p(y|b, ψ): conditional density of y given the random effects b
p(b): density of b
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Proposed approach

M(ψ, ξ) = E

(
∂ log(L(y,ψ))

∂ψ
∂ log(L(y,ψ))

∂ψ

T
)
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Proposed approach
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T
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∫
y

(
∂ log(L(y, ψ))

∂ψ
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Ay

·L(y, ψ)dy

Monte Carlo - MC
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∂ log(L(y, ψ))
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T
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Ay

·L(y, ψ)dy
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∫
b1

∂(log(p(y|b1,ψ)p(b1)))
∂ψk

p(y|b1, ψ)p(b1)∫
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db1.
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Markov Chains Monte Carlo - MCMC
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MC-MCMC algorithm for FIM evaluation

∫
y

∫
b1

∂(log(p(y|b1,ψ)p(b1)))
∂ψk

p(y|b1, ψ)p(b1)∫
p(y|b, ψ)p(b)db︸ ︷︷ ︸

conditional density
of b given y

db1.

∫
b2

∂(log(p(y|b2,ψ)p(b2)))
∂ψl

p(y|b2, ψ)p(b2)∫
p(y|b, ψ)p(b)db︸ ︷︷ ︸

conditional density
of b given y

db2. L(y, ψ)︸ ︷︷ ︸
marginal
density
of y

dy
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MC-MCMC algorithm for FIM evaluation

∫
y

∫
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conditional density
of b given y
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marginal
density
of y

dy

(I) Draw an R-sample of y from its marginal distribution.
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MC-MCMC algorithm for FIM evaluation

∫
y

∫
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conditional density
of b given y

db2. L(y, ψ)︸ ︷︷ ︸
marginal
density
of y

dy

(I) Draw an R-sample of y from its marginal distribution.

(II) For each value of y sampled:
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MC-MCMC algorithm for FIM evaluation

∫
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(I) Draw an R-sample of y from its marginal distribution.

(II) For each value of y sampled:

(III) Using MCMC, draw two series of M -samples of b from its conditional
density given y.
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MC-MCMC algorithm for FIM evaluation

∫
y

∫
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of b given y

db2. L(y, ψ)︸ ︷︷ ︸
marginal
density
of y

dy

(I) Draw an R-sample of y from its marginal distribution.

(II) For each value of y sampled:

(III) Using MCMC, draw two series of M -samples of b from its conditional
density given y.

(IV) Estimate
∫
b1

and
∫
b2

by the mean of the partial derivatives of the
conditional log-likelihood taken in the samples of b drawn in step (III).
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∫
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density
of y

dy

(I) Draw an R-sample of y from its marginal distribution.

(II) For each value of y sampled:

(III) Using MCMC, draw two series of M -samples of b from its conditional
density given y.

(IV) Estimate
∫
b1

and
∫
b2

by the mean of the partial derivatives of the
conditional log-likelihood taken in the samples of b drawn in step (III).

(V) Using MC, estimate
∫
y
by the mean according to y of the product of the

previous partial derivatives.
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Partial derivatives of the conditional log-likelihood

∂ (log(p(y|b, ψ)p(b)))
∂ψk

By hand. For continuous data:

∂ (log(p(y|b, ψ)p(b)))

∂ψk
= −

1

2

[
Tr

(
V −1
b

∂Vb

∂ψk

)
− 2(y − Eb)TV −1

b

∂Eb

∂ψk

− (y − Eb)TV −1
b

∂Vb

∂ψk
V −1
b (y − Eb) + Tr

(
Ω−1 ∂Ω

∂ψk

)
− bTΩ−1 ∂Ω

∂ψk
Ω−1b

]
with Eb = f(g(µ, b), ξ) and Vb = Σ

Numerically for all types of distributions
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STAN∗ for MCMC
STAN

Markov Chain Monte Carlo (MCMC) sampler (as JAGS, BUGS, ...)

To sample in posterior distributions
Based on constructing a Markov chain that has the desired
distribution as its stationary distribution

STAN uses Hamiltonian Monte Carlo (HMC)

non-random walk Monte Carlo method vs. Metropolis-Hastings, Gibbs
sampling, ...
More complex but more efficient, faster convergence
⇒ Able to overcome some issues inherent in Gibbs sampling

STAN calculates the gradient of the log probability function (necessary for
HMC)

∗ Stan Development Team. Gelman, Carpenter, ... Columbia University
2014. Stan: A C++ Library for Probability and Sampling, Version 2.5.0. http://mc-stan.org
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FIM evaluation

We compared 3 approaches:

Linearization (FO) using PFIM 4.0

AGQ-based approach (AGQ) implemented in R

MCMC-based approach (MCMC) implemented in R (using rstan)

with clinical trial simulations (CTS):

Simulate 1000 datasets Y with Ψ = ΨT using R

For each Y : estimate Ψ̂ using Monolix 4.3

in terms of

RSE / RRMSE: RRMSE =

√
1

1000

∑
(Ψ̂−ΨT )2 /ΨT

Calculation time
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Example 1: PK Warfarin

PKW: One compartment model with first order absorption and elimination:

f(φ = (ka, V, CL), t) =
70

V

ka

ka − CL
V

(
e−

CL
V t − e−kat

)
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Example 1: PK Warfarin

PKW: One compartment model with first order absorption and elimination:

f(φ = (ka, V, CL), t) =
70

V

ka

ka − CL
V

(
e−

CL
V t − e−kat

)

Fixed effects: (µka , µV , µCL) = (1.00, 8.00, 0.15)

Exponential random effects with variances:
(ω2
ka
, ω2

V , ω
2
CL) = (0.60, 0.02, 0.07)

Proportional residual error: σslope = 0.1

8 times: t = ξ = (0.5, 1, 2, 6, 24, 36, 72, 120)

N = 32 patients

Nyberg et al. Br J Clin Pharmacol 79, 6–17 (2015).
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Example 1 - RSE/RRMSE
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Example 2: Sigmoïd Emax model

SC1: Sigmoïd Emax model:

f(φ = (E0, Emax, ED50, γ), d) = E0 +
Emaxd

γ

EDγ
50 + dγ
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Example 2: Sigmoïd Emax model

SC1: Sigmoïd Emax model:

f(φ = (Emax, ED50), d) = E0 +
Emaxd

γ

EDγ
50 + dγ

Fixed effects: (µE0 , µEmax , µED50 , µγ) = (5, 30, 500, 3)

Exponential random effects with variance-covariance:

Ω =


0.09 0.06 0.06 0
0.06 0.09 0.06 0
0.06 0.06 0.09 0

0 0 0 0.09


Combined residual error: (σinter, σslope) = (0.2, 0.2)

4 doses: d = (0, 100, 300, 1000)

N = 100 patients

Dumont, Chenel and Mentré. Influence of covariance between random effects in design for nonlinear mixed-effect

models with an illustration in pediatric pharmacokinetics. J Biopharm Stat 2014.
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Example 2 - RSE/RRMSE
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Example 3: Repeated time-to-event
RRTE: Exponential distribution for repeated time-to-event with constant hazard:

P (y|b) = λ1 exp(−λ1t)

Fixed effects: µ1 = 1.0

Exponential random effects: λ1 = µ1 exp(b)
with variances: ω2

1 = 0.1

Censoring time: 10

N = 50 patients
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Example 3 - RSE/RRMSE
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Example 4: Longitudinal binary
LLB: Probability of response at time t:

P (y = 1|b) =
exp(β1 + β2(1− µ3δ)t)

1 + exp(β1 + β2(1− µ3δ)t)

Fixed effects: (µ1, µ2, µ3) = (−1.0, 4.0, 0.4)

Additive random effects with variances: (ω2
1 , ω

2
2) = (0.5, 4.0)

2 groups: δ = 0 and δ = 1

13 time points equally spaced between 0 and 1 time units for each patient

N = 25 patients per group
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Example 4 - RSE/RRMSE
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Comparison: calculation time

Time:

PKW SC1 RTTE LLB
CTS >5h >5h >5h >5h

MCMC ≈ 6min ≈ 8min ≈ 2min ≈ 4min
AGQ ≈ 2min ≈ 13min ≈ 10s ≈ 2min
FO <5s <5s - -

� AGQ: time increases exponentially with the number of random parameters

� MCMC: time increases linearly
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Conclusion

Need of new methods for FIM evaluation
Developed a MC-MCMC-based method for evaluating FIM
Advantages:

Adapted for discrete and continuous models
No model linearization
Very high agreement with clinical trial results

Drawbacks:
Much slower than FO approximation

Perspectives:
Publish R package MIXFIM on CRAN (rstan 07/2015)

Show convergence, stochastic error
Investigate design optimization

Use model averaging to account for model uncertainty
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