Evaluation of the Fisher information matrix in nonlinear mixed effect models without linearization

Marie-Karelle Riviere, Sebastian Ueckert, and France Mentré

INSERM, IAME, UMR 1137, F-75018 Paris, France; Univ Paris Diderot, Sorbonne Paris Cité, F-75018 Paris, France

- Proposed approach to compute the FIM
- Sevaluation by simulations

Outline

Introduction

Proposed approach to compute the FIM

Longitudinal data

- Longitudinal or repeated measurements
- Several observations per patient across time
- Within and between subject variability
- \Rightarrow Non Linear Mixed Effect Models
 - Estimation of parameters of the model: by Maximum Likelihood \Rightarrow No analytical form of the likelihood
 - \Rightarrow Specific software available

- How to design these studies ?
 - Number of subjects
 - Number of points per subject
- Objective: predict the precision in estimation \Rightarrow Relative Standard Error (RSE)

FIM in NLMEM

Instead of performing clinical trial simulations \Rightarrow Evaluation of the Fisher Information Matrix (FIM)

- Inverse FIM = lower bound of the variance-covariance matrix of any unbiased parameters estimator (Cramer-Rao inequality)
- $\bullet~\mathsf{FIM} \Rightarrow \mathsf{Evaluate}~\mathsf{and}~\mathsf{optimize}~\mathsf{designs}$
- In NLMEM: no analytical form
- \Rightarrow First-order (FO) linearization Performs very well, but cannot applied to:
 - Complex nonlinear models
 - Discrete data

Mentré et al. Biometrika 84, 429-442 (1997).

Proposed approach to compute the FIM

3 Evaluation by simulations

Nonlinear mixed effect models

For continuous data:

$$y_i = f(g(\mu, b_i), \xi_i) + \varepsilon_i$$

For discrete data: $p(y_i, \psi | b_i) = \prod_{j=1}^{n_i} h(y_{ij}, g(\mu, b_i), \xi_i)$

with

$$y_i = (y_{i1}, \dots, y_{in_i})^T$$
 response for individual $i \ (i = 1, \dots, N)$

- f, h structural model
- ξ_i elementary design for subject i
- g individual parameters vector, function of μ and b_i
- $\boldsymbol{\mu}$ vector of fixed effects
- b_i vector of random effects for individual $i, b_i \sim \mathcal{N}(0, \Omega)$
- ε_i vector of residual errors, $\varepsilon_i \sim \mathcal{N}(0,\Sigma)$ and Σ diagonal matrix
- ψ vector of all parameters, $\psi = (\mu, \Omega, \Sigma)$

Fisher Information Matrix (FIM)

Population FIM:

$$M(\psi, \Xi) = \sum_{i=1}^{N} M(\psi, \xi_i)$$

with Ξ population design ($\Xi = (\xi_1, \dots, \xi_N)^{\mathsf{T}}$)

Individual FIM:
$$M(\psi,\xi) = E\left(\frac{\partial \log(L(y,\psi))}{\partial \psi} \frac{\partial \log(L(y,\psi))}{\partial \psi}^T\right)$$

with the likelihood: $L(y,\psi) = \int_b p(y|b,\psi) p(b) db$

where $p(y|b,\psi)$: conditional density of y given the random effects b p(b): density of b

Proposed approach

$$M(\psi,\xi) = E\left(\frac{\partial \log(L(y,\psi))}{\partial \psi} \frac{\partial \log(L(y,\psi))}{\partial \psi}^T\right)$$

Proposed approach

Proposed approach

After calculation... $A_y \iff$

$$\int_{b_1} \frac{\partial (\log(p(y|b_1,\psi)p(b_1)))}{\partial \psi_k} \frac{p(y|b_1,\psi)p(b_1)}{\int p(y|b,\psi)p(b)db} db_1 \cdot \int_{b_2} \frac{\partial (\log(p(y|b_2,\psi)p(b_2)))}{\partial \psi_l} \frac{p(y|b_2,\psi)p(b_2)}{\int p(y|b,\psi)p(b)db} db_2$$

Method

Simulations

Conclusion

Proposed approach

After calculation... $A_y \iff$

$$\int_{b_1} \underbrace{\frac{\partial(\log(p(y|b_1,\psi)p(b_1)))}{\partial\psi_k}}_{\substack{\partial\psi_k}} \underbrace{\frac{p(y|b_1,\psi)p(b_1)}{\int p(y|b,\psi)p(b)db}}_{\substack{\text{conditional density} \\ \text{of } b \text{ given } y}} db_1 \cdot \int_{b_2} \underbrace{\frac{\partial(\log(p(y|b_2,\psi)p(b_2)))}{\partial\psi_l}}_{\partial\psi_l} \underbrace{\frac{p(y|b_2,\psi)p(b_2)}{\int p(y|b,\psi)p(b)db}}_{\substack{\text{conditional density} \\ \text{of } b \text{ given } y}} db_1 \cdot \int_{b_2} \underbrace{\frac{\partial(\log(p(y|b_2,\psi)p(b_2)))}{\partial\psi_l}}_{\substack{\text{conditional density} \\ \text{of } b \text{ given } y}} \underbrace{\frac{p(y|b_1,\psi)p(b_1)}{\int p(y|b,\psi)p(b)db}}_{\substack{\text{conditional density} \\ \text{of } b \text{ given } y}} db_1 \cdot \int_{b_2} \underbrace{\frac{\partial(\log(p(y|b_2,\psi)p(b_2)))}{\partial\psi_l}}_{\substack{\text{conditional density} \\ \text{of } b \text{ given } y}} \underbrace{\frac{p(y|b_1,\psi)p(b_1)}{\int p(y|b_1,\psi)p(b)db}}_{\substack{\text{conditional density} \\ \text{of } b \text{ given } y}} db_1 \cdot \int_{b_2} \underbrace{\frac{\partial(\log(p(y|b_2,\psi)p(b_2))}{\partial\psi_l}}_{\substack{\text{conditional density} \\ \text{of } b \text{ given } y}} db_1 \cdot \int_{b_2} \underbrace{\frac{\partial(\log(p(y|b_2,\psi)p(b_2))}{\partial\psi_l}}_{\substack{\text{conditional density} \\ \text{conditional density} \\ \text{$$

Markov Chains Monte Carlo - MCMC

(I) Draw an R-sample of y from its marginal distribution.

(I) Draw an R-sample of y from its marginal distribution.

(II) For each value of y sampled:

- (I) Draw an R-sample of y from its marginal distribution.
- (II) For each value of y sampled:
 - (III) Using MCMC, draw two series of M-samples of b from its conditional density given y.

- (I) Draw an R-sample of y from its marginal distribution.
- (II) For each value of y sampled:
 - (III) Using MCMC, draw two series of M-samples of b from its conditional density given y.
 - (IV) Estimate \int_{b_1} and \int_{b_2} by the mean of the partial derivatives of the conditional log-likelihood taken in the samples of *b* drawn in step (III).

- (I) Draw an R-sample of y from its marginal distribution.
- (II) For each value of y sampled:
 - (III) Using MCMC, draw two series of M-samples of b from its conditional density given y.
 - (IV) Estimate \int_{b_1} and \int_{b_2} by the mean of the partial derivatives of the conditional log-likelihood taken in the samples of *b* drawn in step (III).
- (V) Using MC, estimate \int_y by the mean according to y of the product of the previous partial derivatives.

Partial derivatives of the conditional log-likelihood

$\frac{\partial \left(\log(p(y|b,\psi)p(b))\right)}{\partial \psi_k}$

• By hand. For continuous data:

$$\begin{split} &\frac{\partial\left(\log(p(y|b,\psi)p(b))\right)}{\partial\psi_k} = -\frac{1}{2}\left[Tr\left(V_b^{-1}\frac{\partial V_b}{\partial\psi_k}\right) - 2(y-E_b)^TV_b^{-1}\frac{\partial E_b}{\partial\psi_k} \\ &-(y-E_b)^TV_b^{-1}\frac{\partial V_b}{\partial\psi_k}V_b^{-1}(y-E_b) + Tr\left(\Omega^{-1}\frac{\partial\Omega}{\partial\psi_k}\right) - b^T\Omega^{-1}\frac{\partial\Omega}{\partial\psi_k}\Omega^{-1}b\right] \end{split}$$

with $E_b = f(g(\mu,b),\xi)$ and $V_b = \Sigma$

• Numerically for all types of distributions

STAN* for MCMC

<u>STAN</u>

- Markov Chain Monte Carlo (MCMC) sampler (as JAGS, BUGS, ...)
 - To sample in posterior distributions
 - Based on constructing a Markov chain that has the desired distribution as its stationary distribution
- STAN uses Hamiltonian Monte Carlo (HMC)
 - non-random walk Monte Carlo method vs. Metropolis-Hastings, Gibbs sampling, ...
 - More complex but more efficient, faster convergence
 - \Rightarrow Able to overcome some issues inherent in Gibbs sampling
- STAN calculates the gradient of the log probability function (necessary for HMC)

* Stan Development Team. Gelman, Carpenter, ... <u>Columbia University</u> 2014. Stan: A C++ Library for Probability and Sampling, Version 2.5.0. http://mc-stan.org

Outline

- 2 Proposed approach to compute the FIM
- Sevaluation by simulations

4 Conclusion

FIM evaluation

We compared 3 approaches:

- Linearization (FO) using PFIM 4.0
- AGQ-based approach (AGQ) implemented in R
- MCMC-based approach (MCMC) implemented in R (using rstan)

with clinical trial simulations (CTS):

- Simulate 1000 datasets Y with $\Psi=\Psi_T$ using R
- For each Y: estimate $\hat{\Psi}$ using Monolix 4.3

in terms of

- RSE / RRMSE: $RRMSE = \sqrt{\frac{1}{1000}\sum(\hat{\Psi} \Psi_T)^2} / \Psi_T$
- Calculation time

Example 1: PK Warfarin

PKW: One compartment model with first order absorption and elimination:

$$f(\phi = (k_a, V, CL), t) = \frac{70}{V} \frac{k_a}{k_a - \frac{CL}{V}} \left(e^{-\frac{CL}{V}t} - e^{-k_a t} \right)$$

Riviere (UMRS 1137)

Example 1: PK Warfarin

PKW: One compartment model with first order absorption and elimination:

$$f(\phi = (k_a, V, CL), t) = \frac{70}{V} \frac{k_a}{k_a - \frac{CL}{V}} \left(e^{-\frac{CL}{V}t} - e^{-k_a t} \right)$$

- Fixed effects: $(\mu_{k_a}, \mu_V, \mu_{CL}) = (1.00, 8.00, 0.15)$
- Exponential random effects with variances: $(\omega_{k_a}^2, \omega_V^2, \omega_{CL}^2) = (0.60, 0.02, 0.07)$
- Proportional residual error: $\sigma_{\text{slope}} = 0.1$
- 8 times: $t = \xi = (0.5, 1, 2, 6, 24, 36, 72, 120)$
- N = 32 patients

Nyberg et al. Br J Clin Pharmacol 79, 6–17 (2015).

Example 1 - RSE/RRMSE

Example 2: Sigmoïd E_{max} model

SC1: Sigmoïd E_{max} model:

$$f(\phi = (E_0, E_{max}, ED_{50}, \gamma), d) = E_0 + \frac{E_{max}d^{\gamma}}{ED_{50}^{\gamma} + d^{\gamma}}$$

Example 2: Sigmoïd E_{max} model

SC1: Sigmoïd E_{max} model:

$$f(\phi = (E_{max}, ED_{50}), d) = E_0 + \frac{E_{max}d^{\gamma}}{ED_{50}^{\gamma} + d^{\gamma}}$$

• Fixed effects:
$$(\mu_{E_0}, \mu_{E_{max}}, \mu_{ED_{50}}, \mu_{\gamma}) = (5, 30, 500, 3)$$

• Exponential random effects with variance-covariance:

 $\Omega = \begin{pmatrix} 0.09 & 0.06 & 0.06 & 0\\ 0.06 & 0.09 & 0.06 & 0\\ 0.06 & 0.06 & 0.09 & 0\\ 0 & 0 & 0 & 0.09 \end{pmatrix}$

• Combined residual error: $(\sigma_{\text{inter}}, \sigma_{\text{slope}}) = (0.2, 0.2)$

- 4 doses: d = (0, 100, 300, 1000)
- N = 100 patients

Riviere (UMRS 1137)

Example 2 - RSE/RRMSE

Example 3: Repeated time-to-event

RRTE: Exponential distribution for repeated time-to-event with constant hazard:

 $P(y|b) = \lambda_1 \exp(-\lambda_1 t)$

- Fixed effects: $\mu_1 = 1.0$
- Exponential random effects: $\lambda_1 = \mu_1 \exp(b)$ with variances: $\omega_1^2 = 0.1$
- Censoring time: 10
- N = 50 patients

Example 3 - RSE/RRMSE

Example 4: Longitudinal binary

LLB: Probability of response at time *t*:

$$P(y = 1|b) = \frac{\exp(\beta_1 + \beta_2(1 - \mu_3\delta)t)}{1 + \exp(\beta_1 + \beta_2(1 - \mu_3\delta)t)}$$

- Fixed effects: $(\mu_1, \mu_2, \mu_3) = (-1.0, 4.0, 0.4)$
- $\bullet~{\rm Additive~random~effects}$ with variances: $(\omega_1^2,\omega_2^2)=(0.5,4.0)$

• 2 groups:
$$\delta = 0$$
 and $\delta = 1$

- 13 time points equally spaced between 0 and 1 time units for each patient
- N = 25 patients per group

Example 4 - RSE/RRMSE

Comparison: calculation time

4 2 0

		PKW	SC1	RTTE	LLB
	CTS	>5h	>5h	>5h	>5h
Time:	MCMC	\approx 6min	pprox 8min	pprox 2min	pprox 4min
	AGQ	≈ 2 min	pprox 13min	pprox 10s	pprox 2min
	FO	<5s	<5s	-	-
	4				
	- 13				
	(in min) 8 10				
	e e				

Number of random effects

-	•			
	I	m	าค	•
•	•	•••		•

	PKW	SC1	RTTE	LLB
CTS	>5h	>5h	>5h	>5h
MCMC	\approx 6min	pprox 8min	$pprox 2 { m min}$	pprox 4min
AGQ	pprox 2min	pprox 13min	pprox 10s	pprox 2min
FO	<5s	<5s	-	-

-		
	ime	
		•

	PKW	SC1	RTTE	LLB
CTS	>5h	>5h	>5h	>5h
MCMC	\approx 6min	pprox 8min	pprox 2min	pprox 4min
AGQ	≈ 2 min	pprox 13min	pprox 10s	$pprox 2 { m min}$
FO	<5s	<5s	-	-

-	•			
	I	m	าค	•
•	•	•••		•

	PKW	SC1	RTTE	LLB
CTS	>5h	>5h	>5h	>5h
MCMC	\approx 6min	pprox 8min	pprox 2min	pprox 4min
AGQ	pprox 2min	pprox 13min	pprox 10s	$pprox 2 { m min}$
FO	<5s	<5s	-	-

-	•			
	I	m	าค	•
•	•	•••		•

	PKW	SC1	RTTE	LLB
CTS	>5h	>5h	>5h	>5h
MCMC	\approx 6min	pprox 8min	$pprox 2 { m min}$	pprox 4min
AGQ	≈ 2 min	pprox 13min	pprox 10s	$pprox 2 { m min}$
FO	<5s	<5s	-	-

-			
	11	n	е.
•	•••	•••	۰.

- ► AGQ: time increases exponentially with the number of random parameters
- ► MCMC: time increases linearly

Outline

- 2 Proposed approach to compute the FIM
- 3 Evaluation by simulations

	Method	Conclusion
Conclusion		

- Need of new methods for FIM evaluation
- Developed a MC-MCMC-based method for evaluating FIM
- Advantages:
 - Adapted for discrete and continuous models
 - No model linearization
 - Very high agreement with clinical trial results
- Drawbacks:
 - Much slower than FO approximation
- Perspectives:
 - Publish R package MIXFIM on CRAN (rstan 07/2015)
 - Show convergence, stochastic error
 - Investigate design optimization
 - Use model averaging to account for model uncertainty

Thank you for your attention!

This work was supported by the Innovative Medicines Initiative Joint Undertaking under grant agreement no. 115156, resources of which are composed of financial contributions from the European Union's Seventh Framework Program (FP7/2007 –2013) and EFPIA companies' in kind contribution. The DDMoRe project is also supported by financial contribution from Academic and SME partners. This work does not necessarily represent the view of all DDMoRe partners. This work has also received funding from the European Union's 7th Framework Programme for research, technological development and demonstration under Grant Agreement no 602552.

