The impact of selection and chronological bias on test decisions in survival analysis

Ralf-Dieter Hilgers Marcia Rückbeil

Department of Medical Statistics
RWTH Aachen University

August 22, 2016

The IDeAl project has received funding from the European Union’s 7th Framework Programme for research, technological development and demonstration under Grant Agreement no 602552.
The objective of any clinical trial is to provide an unbiased comparison of the differences between two treatments.

- Rosenberger and Lachin (2016)
Dealing with bias

- Randomization is necessary to prevent bias
- ...but not sufficient!
Dealing with bias

- Randomization is necessary to prevent bias
- ...but not sufficient!

Question: How to measure bias?
Dealing with bias

- Randomization is necessary to prevent bias
- ...but not sufficient!

Question: How to measure bias?

→ Impact on test decision, e.g. type I error probability (ICH E9, 1998)
Previous research: Continuous outcome

- Proschan (1994)
- Kennes et al. (2011)
- Tamm et al. (2012)
- Langer (2014)
- Rosenkranz (2011)
- Tamm and Hilgers (2014)
- Uschner et al. (2015)

\{ Selection bias \\
\} Chronological bias

→ Software tool
Previous research: Continuous outcome

- Proschan (1994)
- Kennes et al. (2011)
- Tamm et al. (2012)
- Langer (2014)
- Rosenkranz (2011)
- Tamm and Hilgers (2014)
- Uschner et al. (2015)

\[\text{Selection bias} \]
\[\text{Chronological bias} \]

Objective

Impact of bias on type I error probability for \textit{time-to-event} trials
Terminology and assumptions: randomization

- Two-armed randomized controlled trial, total sample size N
- Experimental (E), and control treatment (C)
- $t = (t_1, \ldots, t_N) \in \{0, 1\}^N$ randomization sequence such that

 $$t_i = \begin{cases}
 0, & \text{if } i\text{th patient is assigned to } C \\
 1, & \text{if } i\text{th patient is assigned to } E
 \end{cases}$$

- t realization of random variable $T = (T_1, \ldots, T_N)$
Terminology and assumptions: distribution

- Group C of size n, group E of size m, $N = m + n$
- Exponentially distributed survival times Z_1, \ldots, Z_N where

 $$Z_i \sim \begin{cases}
 \text{Exp}(\lambda_C), & \text{if } i\text{th patient is assigned to } C \\
 \text{Exp}(\lambda_E), & \text{if } i\text{th patient is assigned to } E
 \end{cases}$$
- All N events will be observed
Test setting

- Two-sided hypotheses:
 \[H_0 : \frac{\lambda_C}{\lambda_E} = 1 \quad \text{vs.} \quad H_1 : \frac{\lambda_C}{\lambda_E} \neq 1 \]

- F-test is performed (Cox, 1953)

- Estimate \(\frac{\lambda_C}{\lambda_E} \) by MLEs \(\hat{\lambda}_C/\hat{\lambda}_E \):
 \[
 S_F = \frac{\hat{\lambda}_C}{\hat{\lambda}_E} = \frac{\overline{Z}_E}{\overline{Z}_C} \sim F(2m, 2n) \quad \text{under} \ H_0,
 \]

where \(\overline{Z}_C = \frac{1}{n} \sum_{i=1}^{N} Z_i(1 - t_i) \) and \(\overline{Z}_E = \frac{1}{m} \sum_{i=1}^{N} Z_i t_i \)
Approach

Objective

Impact of bias on type I error probability for time-to-event trials

1. Types of bias and biasing policy
2. Distribution F-test in the presence of bias
3. Applications
Issue: selection bias

- Selection bias endangering internal validity
- *Systematic baseline covariate imbalances across treatment groups* (Berger, 2005)
Selection bias endangering internal validity

Systematic baseline covariate imbalances across treatment groups (Berger, 2005)

Failed masking \rightarrow third-order selection bias (Berger, 2005)
Issue: chronological bias

- **Problem**: Patients are enrolled sequentially over time
 - Patients are treated sequentially over time
Problem: Patients are enrolled sequentially over time

Stepwise time trend

Expected outcome

0 1 2 3 4 5 6 7 8

Time
Problem: Patients are enrolled sequentially over time

![Monotone time trend](image)

→ **Chronological bias**
Biasing policy

Assumptions

- **Selection bias:**
 - Patients have different expected responses
 - Recruiter favors E and is able to decline enrollment
 - Guess pursuant to convergence strategy (Blackwell & Hodges, 1957)

- **Chronological bias:**
 - Monotone time trend present

- No treatment effect, $\lambda := \lambda_E = \lambda_C$
Biasing policy

Selection and chronological bias

Distribution of ith enrolled patient: $Z_i \sim \text{Exp}(\lambda_i)$ with

$$
\lambda_i = \begin{cases}
\lambda \theta^{i-1}/\delta & \text{if } N_E(i-1) > N_C(i-1) \\
\lambda \theta^{i-1} & \text{if } N_E(i-1) = N_C(i-1) \\
\lambda \theta^{i-1}\delta & \text{if } N_E(i-1) < N_C(i-1)
\end{cases}
$$

- $N_E(i - 1)$ and $N_C(i - 1)$ allocations to E and C after $i - 1$ allocations
- $\delta \in (0, 1)$ biasing factor, $\theta \in (0, 1)$ monotone time trend
Biased distribution of the F-statistic

Biased distribution

Given: randomization sequence t, biasing factor δ, monotone time trend θ, $N = n + m$ patients. Assuming $\lambda_i \neq \lambda_j$ for all $i \neq j$, and defining special Lagrange basis polynomials

$$\ell_k(i) = \prod_{j \neq i, t_j = k} \frac{\lambda_j}{\lambda_j - \lambda_i}$$

the biased distribution is

$$F_{SF|T=t}(z) = \begin{cases}
\sum_{i=1}^{N} t_i \ell_1(i) \sum_{j=1}^{N} (1 - t_j) \ell_0(j) \left(1 - \frac{\lambda_j}{zm\lambda_i/n + \lambda_j}\right), & z > 0, \\
0, & z \leq 0.
\end{cases}$$
Biased distribution

Given: randomization sequence \(t \), biasing factor \(\delta \), monotone time trend \(\theta \), \(N = n + m \) patients. Assuming \(\lambda_i \neq \lambda_j \) for all \(i \neq j \), and defining special Lagrange basis polynomials

\[
\ell_k(i) = \prod_{j \neq i, t_j = k} \frac{\lambda_j}{\lambda_j - \lambda_i}
\]

the biased distribution is

\[
F_{SF|T=t}(z) = \begin{cases}
 \sum_{i=1}^{N} t_i \ell_1(i) \sum_{j=1}^{N} (1 - t_j) \ell_0(j) \left(1 - \frac{\lambda_j}{zm\lambda_i/n+\lambda_j} \right), & z > 0, \\
 0, & z \leq 0.
\end{cases}
\]

⇒ Assess impact of bias for particular randomization sequence
Comparison of randomization procedures

- Distinct randomization procedures yield distinct randomization sequences
- Each randomization sequence yields type I error probability
Comparison of randomization procedures

- Distinct randomization procedures yield distinct randomization sequences
- Each randomization sequence yields type I error probability

Investigated randomization procedures

RAR (Random allocation rule) Draw without replacement from an urn with \(N/2 \) marbles per group.

PBR(\(k \)) (Permuted block randomization) Randomize in blocks of length \(k \), within each block like in RAR.
Comparison for $N = 20$

Setting: Two-sided F-test, H_0 true, biasing factor $\delta = 0.7$, monotone time trend $\theta = 0.95$, nominal significance level $\alpha_0 = 0.05$
Conclusions and outlook

- Biasing policy: model selection and chronological bias, if $Z_1, \ldots, Z_N \sim \text{Exp}$
- Formula: impact on test decision if F-test is performed and no censoring
- Formula can be generalized for $\lambda_C \neq \lambda_E$
- Compare distinct randomization procedures
- F-test with censoring
- Biasing policy can as well be applied for other test statistics
Conclusions and outlook

- Biasing policy: model selection and chronological bias, if $Z_1, \ldots, Z_N \sim \text{Exp}$
- Formula: impact on test decision if F-test is performed and no censoring
- Formula can be generalized for $\lambda_C \neq \lambda_E$
- Compare distinct randomization procedures
- F-test with censoring
- Biasing policy can as well be applied for other test statistics

Thank you!
References I

