

Efficient tests for the similarity of dose response curves

Kathrin Möllenhoff, Ruhr-Universität Bochum Holger Dette, Ruhr-Universität Bochum

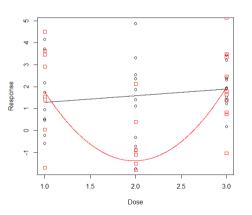
Utrecht, 2015

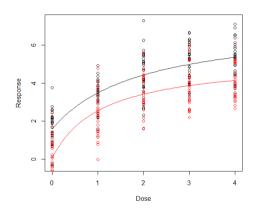
FP7 HEALTH 2013 - 602552

Outline

- Similarity of curves
- 2 A conservative test for similarity of curves
- 3 Efficient tests for the similarity of curves
- 4 Finite sample properties
- Conclusions

Comparing curves - The setting





Comparing curves - The setting II

• Two dose response curves (from two samples)

$$Y_{ijk} = m_i(x_{ij}, \vartheta_i) + \varepsilon_{ijk}$$
; $i = 1, 2$; $j = 1, \ldots, \ell_i$; $k = 1, \ldots, n_{ij}$,

- $arepsilon_{ijk}$ independent $\sim \mathcal{N}(0, \sigma_i^2)$ (i = 1, 2)
- $x_{ij} \in \mathcal{X}$ (dose levels)
- $\vartheta_i \in \mathbb{R}^{d_i}$ (parameter in model m_i)

Problem: Are the dose response curves m_1 and m_2 similar?

Comparing curves - The setting II

• Two dose response curves (from two samples)

$$Y_{ijk} = m_i(x_{ij}, \vartheta_i) + \varepsilon_{ijk}$$
; $i = 1, 2$; $j = 1, \ldots, \ell_i$; $k = 1, \ldots, n_{ij}$,

- $arepsilon_{ijk}$ independent $\sim \mathcal{N}(0, \sigma_i^2)$ (i = 1, 2)
- $x_{ii} \in \mathcal{X}$ (dose levels)
- $\vartheta_i \in \mathbb{R}^{d_i}$ (parameter in model m_i)

Problem: Are the dose response curves m_1 and m_2 similar?

Measures of similarity

- d: a metric measuring the distance between m_1 and m_2 .
- Hypothesis of similarity:

$$H_0: d(m_1,m_2) > \Delta$$
 versus $H_1: d(m_1,m_2) \leq \Delta$

(here Δ is a pre-specified constant).

- Examples
 - maximum difference

$$d_{\infty}(m_1, m_2) = \max_{\mathbf{x} \in \mathcal{X}} |m_1(\mathbf{x}, \vartheta_1) - m_2(\mathbf{x}, \vartheta_2)|$$

$$d_2(m_1, m_2) = \left(\int_{\mathcal{X}} (m_1(\mathbf{x}, \vartheta_1) - m_2(\mathbf{x}, \vartheta_2))^2 d\mathbf{x}\right)^{1/2}$$

Measures of similarity

- d: a metric measuring the distance between m_1 and m_2 .
- Hypothesis of similarity:

$$H_0: d(m_1,m_2) > \Delta$$
 versus $H_1: d(m_1,m_2) \leq \Delta$

(here Δ is a pre-specified constant).

- Examples
 - maximum difference

$$d_{\infty}(m_1, m_2) = \max_{x \in \mathcal{X}} |m_1(x, \vartheta_1) - m_2(x, \vartheta_2)|$$

► *L*₂-distance

$$d_2(m_1, m_2) = \left(\int_{\mathcal{X}} (m_1(x, \vartheta_1) - m_2(x, \vartheta_2))^2 dx\right)^{1/2}$$

Example

• EMAX and Log-linear model ($\mathcal{X} = [0,1]$)

$$m_1(x, \vartheta_1) = 0.2 + \frac{0.7x}{0.2 + x}, \quad m_2(x, \vartheta_2) = 0.74 + 0.33 \log(x + 0.2)$$

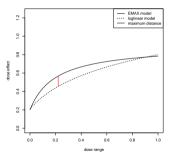


Figure: EMAX and log-linear model.

A conservative test for similarity of curves (Gsteiger, Bretz, Liu (2011))

Testing for similarity (Gsteiger et al. (2011))

Use the maximum distance

$$d_{\infty}(m_1, m_2) = \max_{x \in \mathcal{X}} |m_1(x, \vartheta_1) - m_2(x, \vartheta_2)|$$

Construct a uniform confidence band for the difference

$$m_1(\cdot,\vartheta_1)-m_2(\cdot,\vartheta_2)$$

by a bootstrap approach

• Reject H_0 (i.e. decide for similarity) if the confidence band is contained in the rectangle $\mathcal{X} \times [-\Delta, \Delta]$

Example

• Log-linear and EMAX model ($\mathcal{X} = [0, 1]$)

$$m_1(x, \vartheta_1) = 0.2 + \frac{0.7x}{0.2 + x}, \quad m_2(x, \vartheta_2) = 0.74 + 0.33 \log(x + 0.2)$$

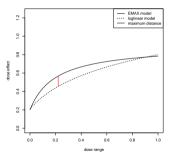


Figure: EMAX and log-linear model.

Testing for similarity (Gsteiger et al. (2011))

• Simulated confidence bands ($n_1 = n_2 = 100$; 100 runs)

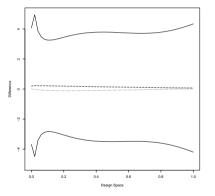
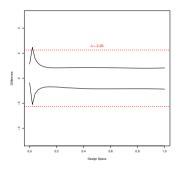


Figure: Confidence bands for the difference of the EMAX and loglinear model.

Example



- \Rightarrow $H_0: d_{\infty}(m_1, m_2) < 2.25$ can not be rejected!
- Simulated power for the hypothesis

$$H_0: \max_{x \in \mathcal{X}} |m_1(x, \vartheta_1) - m_2(x, \vartheta_2)| > 3$$

is 0.15.

The test does not have any power!

Efficient tests for similarity

Tests based on distances

Basic idea: Estimate the distance between m_1 and m_2 directly and decide for similarity for small values of the resulting estimate

• (parametric) estimates of m_1 and m_2 :

$$\hat{m}_1=m_1(\cdot,\hat{\vartheta}_1), \ \hat{m}_2=m_2(\cdot,\hat{\vartheta}_2)$$

• estimate of the distance between m_1 and m_2 :

$$\hat{\boldsymbol{d}}=d(\hat{m}_1,\hat{m}_2)$$

Tests based on distances

 $\hat{\boldsymbol{d}}$: estimate the distance between m_1 and m_2

• Decide for similarity, i.e. reject the hypothesis

$$H_0: d(m_1, m_2) > \Delta$$

whenever

$$\hat{\boldsymbol{d}}=d(\hat{m}_1,\hat{m}_2)\leq q$$

• **Problem:** how do we find the critical value *q*?

Estimating the distance between two curves

• L₂-distance

$$\hat{\mathbf{d}}_{2} = d_{2}(\hat{m}_{1}, \hat{m}_{2}) = \left(\int_{\mathcal{X}} (m_{1}(x, \hat{\vartheta}_{1}) - m_{2}(x, \hat{\vartheta}_{2}))^{2} dx \right)^{1/2}$$

• Empirical process theory $(n_1, n_2 \to \infty)$

$$d_2(\hat{m}_1, \hat{m}_2) - d_2(m_1, m_2) \stackrel{a}{\sim} \mathcal{N}\left(0, \frac{\tau^2}{n_1 + n_2}\right)$$

where

$$\tau^{2} = \int_{\mathcal{X}\times\mathcal{X}} (m_{1}(x,\vartheta_{1}) - m_{2}(x,\vartheta_{2})) k_{\lambda_{1},\lambda_{2}}(x,y) \times (m_{1}(y,\vartheta_{1}) - m_{2}(y,\vartheta_{2})) dx dy$$

Estimating the distance between two curves

Testing for similarity of two dose response curves:

• If $\hat{\tau}^2$ is an estimate of τ^2 , then

$$H_0: d_2(m_1, m_2) > \Delta$$

is rejected, whenever

$$d_2(\hat{m}_1,\hat{m}_2) \leq \Delta + \frac{\hat{\tau}}{\sqrt{n_1 + n_2}} u_{\alpha}$$

ullet It is very difficult to estimate au^2 , especially for small sample sizes

Generate data under the null hypothesis

• Estimate ϑ_1, ϑ_2 under the restriction

$$H_0: \Big(\int_{\mathcal{X}} (m_1(x,\vartheta_1)-m_2(x,\vartheta_2))^2 dx\Big)^{1/2} > \Delta$$

 \leadsto constrained ML-estimates $\hat{\hat{\vartheta_1}}, \hat{\hat{\vartheta_2}}$

Generate bootstrap data (parametric bootstrap)

$$Y^*_{ijk} = m_i(t_{ij}, \hat{\hat{artheta}_i}) + \hat{\sigma_i} arepsilon^*_{ijk}$$

where $arepsilon^*_{ijk}$ are i.i.d. $\sim \mathcal{N}(0,1)$

Generate data under the null hypothesis

• Estimate ϑ_1, ϑ_2 under the restriction

$$H_0: \Big(\int_{\mathcal{X}} (m_1(x,\vartheta_1)-m_2(x,\vartheta_2))^2 dx\Big)^{1/2} > \Delta$$

 \leadsto constrained ML-estimates $\hat{\hat{\vartheta_1}}, \hat{\hat{\vartheta_2}}$

Generate bootstrap data (parametric bootstrap)

$$Y_{ijk}^* = m_i(t_{ij}, \hat{\hat{\vartheta}}_i) + \hat{\sigma}_i \varepsilon_{ijk}^*$$

where $arepsilon_{ijk}^*$ are i.i.d. $\sim \mathcal{N}(0,1)$

Bootstrap test:

- ullet Calculate $\hat{artheta}_1^*, \hat{artheta}_2^*$ from the bootstrap data Y^*_{ijk}
- Calculate

$$\hat{\mathbf{d}}_{2}^{*} = \Big(\int_{\mathcal{X}} (m_{1}(x, \hat{\vartheta}_{1}^{*}) - m_{2}(x, \hat{\vartheta}_{2}^{*}))^{2} dx\Big)^{\frac{1}{2}}$$

- Repeat this procedure B times
- ullet If $\hat{d}_2^{*(1)},\ldots,\hat{d}_2^{*(B)}$ denote the ordered bootstrap replicates the hypothesis

$$H_0: d_2(m_1, m_2) > \Delta$$

is rejected, whenever

$$\hat{\mathbf{d}}_{\mathbf{2}} \leq \hat{\mathbf{d}}_{\mathbf{2}}^{*(\lfloor \mathbf{B}\alpha \rfloor)}$$

- Theoretical properties:
 - ightharpoonup the bootstrap test has asymptotic level α
 - ▶ the bootstrap test is consistent
- More precisely: for increasing sample sizes $n_1, n_2 \to \infty$

$$d_2(m_1,m_2) = \Delta \quad \leadsto \quad \mathbb{P}(\text{"rejection"}) \quad \to \alpha \ d_2(m_1,m_2) > \Delta \quad \leadsto \quad \mathbb{P}(\text{"rejection"}) \quad \to 0 \ d_2(m_1,m_2) < \Delta \quad \leadsto \quad \mathbb{P}(\text{"rejection"}) \quad \to 1$$

Finite sample properties

•
$$m_1(x, \vartheta_1) = \delta + \frac{5x}{x+1}, \qquad m_2(x, \vartheta_2) = \frac{5x}{1+x}, \qquad \mathcal{X} = [0, 4]$$

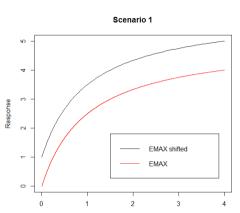


Figure: Two shifted EMAX models.

Dose

Simulation of the nominal level

•
$$m_1(x, \vartheta_1) = \delta + \frac{5x}{x+1}$$
 $m_2(x, \vartheta_2) = \frac{5x}{1+x}$ $\mathcal{X} = [0, 4]$

ullet $H_0: d_2(m_1,m_2) > 1$ versus $H_1: d_2(m_1,m_2) \leq 1$

		$\sigma^2 =$	$\sigma^{2} = 0.25$		$\sigma^2 = 1$	
n	$d_2(m_1,m_2)$	$\alpha = 0.05$	$\alpha = 0.1$	$\alpha = 0.05$	$\alpha = 0.1$	
10	1	0.055	0.117	0.044	0.098	
10	1.5	0.000	0.000	0.003	0.011	
10	2	0.000	0.000	0.000	0.000	
50	1	0.048	0.106	0.061	0.088	
50	1.5	0.000	0.000	0.000	0.000	
50	2	0.000	0.000	0.000	0.000	

Table: Simulated level of the new bootstrap test

Simulation of power

		$\sigma^2 = 0.5$		$\sigma^2 = 1$	
n	$d_2(m_1,m_2)$	$\alpha = 0.05$	$\alpha = 0.1$	$\alpha = 0.05$	$\alpha = 0.1$
10	0	0.713	0.855	0.387	0.555
10	0.2	0.680	0.794	0.346	0.503
10	0.5	0.438	0.574	0.238	0.364
20	0	0.976	0.985	0.739	0.874
20	0.2	0.949	0.974	0.661	0.792
_20	0.5	0.707	0.818	0.440	0.578

Table: Simulated power of the new bootstrap test

20 / 24

Comparison of the two tests

			New test		Gsteiger et al.	
n	$d_2(m_1,m_2)$	$\alpha = 0.05$	$\alpha = 0.1$	$\alpha = 0.05$	$\alpha = 0.1$	
50	1	0.062	0.086	0.000	0.000	
50	1.5	0.000	0.000	0.000	0.000	
50	2	0.000	0.000	0.000	0.000	
150	1	0.053	0.106	0.000	0.000	
150	1.5	0.000	0.000	0.000	0.000	
150	2	0.000	0.001	0.000	0.000	

Table: Simulated level of the new bootstrap test and the test of Gsteiger et al. (2011)

Comparison of two tests

		New test		Gsteiger et al.	
n	$d_2(m_1,m_2)$	$\alpha = 0.05$	$\alpha = 0.1$	$\alpha = 0.05$	$\alpha = 0.1$
50	0	0.984	0.999	0.006	0.011
50	0.2	0.967	0.991	0.000	0.001
50	0.5	0.774	0.971	0.000	0.000
150	0	1.000	1.000	0.632	0.725
150	0.2	1.000	1.000	0.586	0.720
150	0.5	1.000	1.000	0.332	0.447

Table: Simulated power of the new bootstrap test and the test of Gsteiger et al. (2011)

Conclusions

- The test for similarity of Gsteiger et al. (2011) is extremely conservative
- In the second part of this talk a substantially more powerful test has been proposed
 - estimate the distance and the variance of the test statistic directly
 - generate quantiles by parametric bootstrap
- other distances were also considered, e.g.

$$d_{\infty}(m_1, m_2) = \max_{x \in \mathcal{X}} |m_1(x, \vartheta_1) - m(x, \vartheta_2)|$$

these results are now available as preprint and the test was implemented in an R package

Conclusions

- The test for similarity of Gsteiger et al. (2011) is extremely conservative
- In the second part of this talk a substantially more powerful test has been proposed
 - estimate the distance and the variance of the test statistic directly
 - generate quantiles by parametric bootstrap
- other distances were also considered, e.g.

$$d_{\infty}(m_1, m_2) = \max_{x \in \mathcal{X}} |m_1(x, \vartheta_1) - m(x, \vartheta_2)|$$

these results are now available as preprint and the test was implemented in an R package

Conclusions

- The test for similarity of Gsteiger et al. (2011) is extremely conservative
- In the second part of this talk a substantially more powerful test has been proposed
 - estimate the distance and the variance of the test statistic directly
 - generate quantiles by parametric bootstrap
- other distances were also considered, e.g.

$$d_{\infty}(m_1, m_2) = \max_{x \in \mathcal{X}} |m_1(x, \vartheta_1) - m(x, \vartheta_2)|$$

these results are now available as preprint and the test was implemented in an R package

Acknowledgments

Thank you very much!

The research is embedded in the IDeAl EU-FP7 project, Grant-Agreement No. 602 552

References:

Gsteiger, S., Bretz, F. and Liu, W.(2011): Simultaneous Confidence Bands for Nonlinear Regression Models with Application to Population Pharmacokinetic Analyses, Journal of Biopharmaceutical Statistics, 21: 4, 708 725