

Desirability of restricted randomization procedures in small population group trials in case of selection and chronological bias

David Schindler, Ralf-Dieter Hilgers

Department of Medical Statistics RWTH Aachen University

24. August 2015

Motivation

- No scientific evaluation of randomization procedures in the presence of several types of bias found in literature.
- Several types of bias have been investigated independently of each other, but not simultaneously.
- Urgent need for a score that unifies several issues for measuring the different types of bias.

⇒ Propose a new framework for the selection of an appropriate randomization procedure for a small population group trial based on desirability functions.

Motivation

Examplary application of the new framework on two types of bias

- Selection bias:
 - Assessed issue: correct guesses.
- Chronological bias
 - Assessd issue: type-I-error, power.

⇒ Propose a new framework for the selection of an appropriate randomization procedure for a small population group trial based on desirability functions.

Terminology

- ullet Two-armed clinical trial with parallel group design with continuous endpoint and total sample size N.
- Experimental treatment E and control treatment C.
- Let $T = (T_1, ..., T_N)' \in \{E, C\}^N$ be a randomization sequence and T_i be the *i*th element of T.
- Let $N_s(i, T)$ be the number of patients assigned to $s \in \{E, C\}$ after i allocations.

Selection bias

Assuming a balanced trial it is opportune for the experimenter to guess the i-th allocation according to the convergence strategy: (Blackwell and Hodges Jr., 1957)

$$g_{CS}(i, T) = egin{cases} E & N_E(i-1, T) < N_C(i-1, T) \ ext{random guess} & N_E(i-1, T) = N_C(i-1, T) \ C & N_E(i-1, T) > N_C(i-1, T) \end{cases}$$

Expected proportion of Correct Guesses (CG) of T is defined as:

$$CG(T) = \frac{\mathbb{E}\left(\sum_{i=1}^{N} \mathbb{1}_{\{T_i = g_{CS}(i,T)\}}\right)}{N}$$

Chronological bias

Model for chronological bias: (Tamm and Hilgers, 2014; Rosenkranz, 2011)

$$oldsymbol{Y} = egin{pmatrix} 1 & ilde{T}_1 & 1 \ 1 & ilde{T}_2 & 2 \ dots & dots & dots \ 1 & ilde{T}_N & N \end{pmatrix} egin{pmatrix} \mu \ \xi \ artheta \end{pmatrix} + oldsymbol{\epsilon},$$

with
$$\epsilon \sim \mathcal{N}(\mathbf{0}, I_{N \times N})$$
 and $\tilde{T}_i := t(T_i) = \begin{cases} 1, & \text{if } T_i = E \\ -1, & \text{if } T_i = C \end{cases}$

- The trial is evaluated with a model including the effects μ and ξ , although the time effect $\vartheta \neq 0$ is present (misspecification).
 - \Rightarrow The type-l-error α and the power $(1-\beta)$ when testing $\xi=0$ using a t-test is biased, due to not adjusting for ϑ .

Right-sided Derringer-Suich desirability function

Definition: (Derringer and Suich, 1980)

$$d_i(\boldsymbol{T}) := d(c_i(\boldsymbol{T})) = \begin{cases} 1, & \text{if } c_i(\boldsymbol{T}) \leq TV_i \\ \frac{c_i(\boldsymbol{T}) - TV_i}{USL_i - TV_i}, & \text{if } TV_i < c_i(\boldsymbol{T}) \leq USL_i \\ 0, & \text{if } c_i(\boldsymbol{T}) \geq USL_i \end{cases}$$

- $c_i(T)$: value of the *i*-th issue for T.
- TV_i: Target Value of the *i*-th issue.
- USL_i: Upper Specification Limit of the *i*-th issue.

Right-sided Derringer-Suich desirability function

Definition: (Derringer and Suich, 1980)

$$d_i(\boldsymbol{T}) := d(c_i(\boldsymbol{T})) = \begin{cases} 1, & \text{if } c_i(\boldsymbol{T}) \leq TV_i \\ \frac{c_i(\boldsymbol{T}) - TV_i}{USL_i - TV_i}, & \text{if } TV_i < c_i(\boldsymbol{T}) \leq USL_i \\ 0, & \text{if } c_i(\boldsymbol{T}) \geq USL_i \end{cases}$$

- $c_i(T)$: value of the *i*-th issue for T.
- TV_i: Target Value of the *i*-th issue.
- USL_i: Upper Specification Limit of the *i*-th issue.
- \Rightarrow Need a meaningful TV and USL dependent on the issue and practical need.

Right-sided Derringer-Suich desirability function

Definition: (Derringer and Suich, 1980)

$$d_i(\boldsymbol{T}) := d(c_i(\boldsymbol{T})) = egin{cases} 1, & ext{if } c_i(\boldsymbol{T}) \leq TV_i \ rac{c_i(\boldsymbol{T}) - TV_i}{USL_i - TV_i}, & ext{if } TV_i < c_i(\boldsymbol{T}) \leq USL_i \ 0, & ext{if } c_i(\boldsymbol{T}) \geq USL_i \end{cases}$$

Example for settings:

i	$c_i(\mathcal{T})$	$ TV_i $	USL_i
1	CG(T)	0.50	0.75
2	$lpha_{TT}(oldsymbol{T})$	0.05	0.10
3	$eta_{TT}(oldsymbol{T})$	0.20	0.40

Properties of desirability scores

- Desirability scores are dimensionless and $\in [0, 1]$.
- Desirability scores are summarizeable with the geometric mean:

$$ar{d}(oldsymbol{\mathcal{T}}) := \prod_{i=1}^3 d_i(oldsymbol{\mathcal{T}})^{\omega_i} ext{ with } \sum_{i=1}^3 \omega_i = 1.$$

• T with $\bar{d}(T) = 0$ is called undesired randomization sequence.

Properties of desirability scores

- Desirability scores are dimensionless and $\in [0, 1]$.
- Desirability scores are summarizeable with the geometric mean:

$$ar{d}(oldsymbol{\mathcal{T}}) := \prod_{i=1}^3 d_i(oldsymbol{\mathcal{T}})^{\omega_i} ext{ with } \sum_{i=1}^3 \omega_i = 1.$$

- T with $\bar{d}(T) = 0$ is called undesired randomization sequence.
- Weights should be chosen dependent on the planned trial.
- Heuristical approach: Put half of the weights on selection bias and half of the weights on chronological bias.

$$\Rightarrow \omega_1 = 1/2$$
 and $\omega_2 = \omega_3 = 1/4$

D. Schindler

j	$oldsymbol{\mathcal{T}}_j'$	$P(\boldsymbol{T}_j)$	$CG(T_j)$	$d_1(T_j)$	$\alpha_{TT}(T_j)$	$d_2(T_j)$	$1-eta_{TT}(oldsymbol{\mathcal{T}}_j)$	$d_3(T_j)$	$\bar{d}(T_j)$
1	EECC	1/6	0.625						
2	ECEC	$^{1}/_{6}$	0.750						
3	CEEC	1/6	0.750						
4	ECCE	1/6	0.750						
5	CECE	1/6	0.750						
6	CCEE	1/6	0.625						
	averag	e value:	0.708						

Settings: $\vartheta=$ 1/4, $\xi=$ 2.83, $\alpha_0=$ 0.05, and 1 $-\beta_0=$ 0.8. $\alpha_{TT}(T_j)/1-\beta_{TT}(T_j):=$ type-l-error/power of T_j in case of the assumed linear time trend

PBR(k) (Permuted Block Randomization with block length k) Within each block half of the patients are assigned to E and C.

j	$oldsymbol{T}_j'$	$P(\boldsymbol{T}_j)$	$CG(T_j)$	$d_1(\boldsymbol{T}_j)$	$\alpha_{TT}(T_j)$	$d_2(T_j)$	$1 - eta_{TT}(oldsymbol{\mathcal{T}}_j)$	$d_3(T_j)$	$\bar{d}(T_j)$
1	EECC	1/6	0.625	0.500					
2	ECEC	$^{1}/_{6}$	0.750	0.000					
3	CEEC	$^{1}/_{6}$	0.750	0.000					
4	ECCE	$^{1}/_{6}$	0.750	0.000					
5	CECE	$^{1}/_{6}$	0.750	0.000					
6	CCEE	$^{1}/_{6}$	0.625	0.500					
	average	e value:	0.708	0.167	•				

Settings: $\vartheta=\mathbf{1/4},\ \xi=2.83,\ \alpha_{\mathbf{0}}=0.05,\ \mathrm{and}\ 1-\beta_{\mathbf{0}}=0.8.$

 $lpha_{TT}(extbf{\textit{T}}_j)/1 - eta_{TT}(extbf{\textit{T}}_j) :=$ type-I-error/power of $extbf{\textit{T}}_j$ in case of the assumed linear time trend

$$d_1(\boldsymbol{T}_1) = d(CG(\boldsymbol{T}_1)) = \frac{CG(\boldsymbol{T}_1) - TV_1}{USL_1 - TV_1} = \frac{0.625 - 0.5}{0.5 - 0.75} = 0.5$$

j	$oldsymbol{T}_j'$	$P(\boldsymbol{T}_j)$	$CG(T_j)$	$d_1(\boldsymbol{T}_j)$	$\alpha_{TT}(\boldsymbol{T}_j)$	$d_2(\boldsymbol{T}_j)$	$1 - eta_{TT}(oldsymbol{\mathcal{T}}_j)$	$d_3(\boldsymbol{T}_j)$	$ar{d}(m{T}_j)$
1	EECC	1/6	0.625	0.500	0.060	0.804	0.730	0.649	0.601
2	ECEC	$^{1}/_{6}$	0.750	0.000	0.047	1.000	0.734	0.668	0.000
3	CEEC	$^{1}/_{6}$	0.750	0.000	0.043	1.000	0.755	0.776	0.000
4	ECCE	$^{1}/_{6}$	0.750	0.000	0.043	1.000	0.755	0.776	0.000
5	CECE	1/6	0.750	0.000	0.047	1.000	0.792	0.961	0.000
6	CCEE	1/6	0.625	0.500	0.060	0.804	0.842	1.000	0.670
	averag	e value:	0.708	0.167	0.050	0.935	0.768	0.805	0.212

Settings: $\vartheta = 1/4$, $\xi = 2.83$, $\alpha_0 = 0.05$, and $1 - \beta_0 = 0.8$. $\alpha_{TT}(T_i)/1 - \beta_{TT}(T_i) := \text{type-I-error/power of } T_i \text{ in case of the}$

 $lpha_{TT}(extbf{\textit{T}}_j)/1 - eta_{TT}(extbf{\textit{T}}_j) :=$ type-I-error/power of $extbf{\textit{T}}_j$ in case of the assumed linear time trend

$$\bar{d}(\mathbf{T}_1) = \sqrt{d_1(\mathbf{T}_1)} \cdot \sqrt[4]{d_2(\mathbf{T}_1)} \cdot \sqrt[4]{d_3(\mathbf{T}_1)}$$

$$= \sqrt{0.500} \cdot \sqrt[4]{d_2(0.804)} \cdot \sqrt[4]{d_3(0.649)}$$

$$= 0.601$$

j	$oldsymbol{T}_j'$	$P(\boldsymbol{T}_j)$	$CG(T_j)$	$d_1(\boldsymbol{T}_j)$	$\alpha_{TT}(\boldsymbol{T}_j)$	$d_2(\boldsymbol{T}_j)$	$1 - eta_{TT}(oldsymbol{\mathcal{T}}_j)$	$d_3(\boldsymbol{T}_j)$	$ar{d}(m{T}_j)$
1	EECC	1/6	0.625	0.500	0.060	0.804	0.730	0.649	0.601
2	ECEC	$^{1}/_{6}$	0.750	0.000	0.047	1.000	0.734	0.668	0.000
3	CEEC	$^{1}/_{6}$	0.750	0.000	0.043	1.000	0.755	0.776	0.000
4	ECCE	$^{1}/_{6}$	0.750	0.000	0.043	1.000	0.755	0.776	0.000
5	CECE	$^{1}/_{6}$	0.750	0.000	0.047	1.000	0.792	0.961	0.000
6	CCEE	$^{1}/_{6}$	0.625	0.500	0.060	0.804	0.842	1.000	0.670
	average	e value:	0.708	0.167	0.050	0.935	0.768	0.805	0.212

Settings: $\vartheta=1/4$, $\xi=2.83$, $\alpha_0=0.05$, and $1-\beta_0=0.8$. $\alpha_{TT}(T_i)/1-\beta_{TT}(T_i):=$ type-I-error/power of T_i in case of the assumed linear time trend

$$\varnothing \bar{d}(T) = \frac{1}{6} (0.601 + 0 + 0 + 0 + 0 + 0.670)$$

= 0.212

j	$oldsymbol{\mathcal{T}}_j'$	$P(\boldsymbol{T}_j)$	$CG(T_j)$	$d_1(\boldsymbol{T}_j)$	$\alpha_{TT}(\boldsymbol{T}_j)$	$d_2(\boldsymbol{T}_j)$	$1 - eta_{TT}(oldsymbol{\mathcal{T}}_j)$	$d_3(\boldsymbol{T}_j)$	$ar{d}(oldsymbol{\mathcal{T}}_j)$
1	EECC	1/6	0.625	0.500	0.060	0.804	0.730	0.649	0.601
2	ECEC	$^{1}/_{6}$	0.750	0.000	0.047	1.000	0.734	0.668	0.000
3	CEEC	$^{1}/_{6}$	0.750	0.000	0.043	1.000	0.755	0.776	0.000
4	ECCE	$^{1}/_{6}$	0.750	0.000	0.043	1.000	0.755	0.776	0.000
5	CECE	1/6	0.750	0.000	0.047	1.000	0.792	0.961	0.000
6	CCEE	1/6	0.625	0.500	0.060	0.804	0.842	1.000	0.670
	averag	e value:	0.708	0.167	0.050	0.935	0.768	0.805	0.212

Settings: $\vartheta=1/4$, $\xi=2.83$, $\alpha_0=0.05$, and $1-\beta_0=0.8$. $\alpha_{TT}(T_j)/1-\beta_{TT}(T_j):=$ type-l-error/power of T_j in case of the assumed linear time trend

2/3 of the randomization sequences are undesired.

 \Rightarrow Approach for N = 4 not usefull.

Investigated randomization procedures

PBR(k) (Permuted Block Randomization with block length k) Within each block half of the patients are assigned to E and C.

CR Complete randomization is accomplished by tossing a fair coin.

BSD(a) (Big Stick design) CR allow for imbalance within the limit a.

Comparison for N = 12

Settings: $\vartheta = 1/12$, $\xi = 0.90$, $\alpha_0 = 0.05$, and $1 - \beta_0 = 0.8$.

Design	$arnothingar{d}(oldsymbol{T})$ (sd)	$P(\bar{d}(T)=0)$
PBR(4)	0.3199 (0.222)	0.2963
PBR(12)	0.5199 (0.211)	0.0942
CR	0.6503 (0.302)	0.1331
BSD(3)	0.7287 (0.211)	0.0291

- BSD(3) has low probability of generating undesired randomization sequences.
- BSD(3) seems to be the best compromise between handling a time trend and the proportion of correct guesses.

Conclusions

- Presented a framework for the scientific evaluation of randomization procedures dependent on arising bias.
- Evaluation should be part of the statistical trial and analysis plan.
- Other TVs, USLs, and weights for the investigated issues lead to different recommendations.
- Other randomization procedures can be implemented easily.
- Include further issues (e.g. punishment of high imbalances in the end of a trial).

This project has received funding from the European Union's 7th Framework Programme for research, technological development and demonstration under Grant Agreement no 602552.

References

- Blackwell, D. and J. L. Hodges Jr. (1957). Design for the control of selection bias. *Annals of Mathematical Statistics 25*, 449–460.
- Derringer, G. and R. Suich (1980). Simultaneous optimization of several response variables. Journal of Quality Technology 12, 214–219.
- ICH E9 (1998). Statistical principles for clinical trials. Current Step 4 version dated 5 Februrary 1998. Last access in Mai 2015. Available from: http://www.ich.org.
- Rosenkranz, G. K. (2011). The impact of randomization on the analysis of clinical trials. *Statistics in Medicine 30*, 3475–3487.
- Tamm, M. and R.-D. Hilgers (2014). Chronological bias in randomized clinical trials under different types of unobserved time trends. *Methods of Information in Medicine 53*, 501–510.

