Randomization tests in the presence of selection bias

Diane Uschner and Ralf-Dieter Hilgers
Department for Medical Statistics, RWTH Aachen University

August 26, 2015

Preliminaries

Patient Allocation

- Two-arm parallel group trial: groups E, C.
- Randomization sequence $t_{\text {obs }}$ allocates N patients to E and C.

Figure: $t_{\text {obs }}$ and reference set $\Omega_{\text {MSA }}$

Preliminaries

- Two-arm parallel group trial: groups E, C.
- Randomization sequence $t_{o b s}$ allocates N patients to E and C.

Definition

A randomization procedure \mathcal{M} is a probability distribution on $\Gamma=\{E, C\}^{N} . \mathcal{M}$ produces the sequences

$$
\Gamma_{\mathcal{M}}=\left\{t \in \Gamma \mid \mathbb{P}_{\mathcal{M}}(t) \neq 0\right\}
$$

(a) $\Gamma_{R A R}$

(c) $\Gamma_{M P}$

(b) $\Gamma_{P B R}$

(d) $\Gamma_{T B D}$

Randomization test

Null hypothesis

H_{0} : For each patient i the outcome y_{i} is the same disregarding of the treatment he receives.

1. Observe randomization sequence $t_{o b s}$.
2. Observe the response $y_{o b s}=\left(y_{1}, \ldots, y_{N}\right)$.
\Rightarrow Treat the response as fixed!
3. Calculate the randomization distribution of the test statistic:

$$
\forall t \in \Omega: \text { Compute } \quad S\left(t, y_{o b s}\right) .
$$

4. Then the p-value is $p=\sum_{t \in \Omega} \mathbb{P}_{\mathcal{M}}(t) \cdot I\left(\left|S\left(t, y_{o b s}\right)\right| \geq\left|S\left(t_{o b s}, y_{o b s}\right)\right|\right)$

Example: Randomization test for RAR

Ranks of observed response: $y=(1,2,3,4)$, test statistc $S_{t}=\sum_{i=1}^{4} y_{i} \cdot t_{i}-\sum_{i=1}^{4} y_{i} \cdot\left(1-t_{i}\right)$

	t	$\mathbb{P}_{R A R}(t)$	S_{t}	$J_{t}=I\left(\left\|S_{t}\right\| \geq\left\|S_{o b s}\right\|\right)$
1	E E C C	$1 / 6$	-4	1
$*_{2}$	E C E C	$1 / 6$	-2	1
3	C E E C	$1 / 6$	0	0
4	E C C E	$1 / 6$	0	0
5	C E C E	$1 / 6$	2	1
6	C C E E	$1 / 6$	4	1

$$
\Rightarrow p=\sum_{t} \mathbb{P}_{R A R}(t) \cdot J_{t}=4 / 6
$$

Two approach according to sample size

Exact Approach

Use the complete set $\Gamma_{\mathcal{M}}$ of sequences as the reference set Ω !

Monte Carlo Approach

Sample L sequences from $\Gamma_{\mathcal{M}}$ and use this sample as the reference set Ω !

Model for selection bias

Selection bias

Assume now that the y_{i} are realizations of a random variable:

Convergence strategy

$$
Y_{i} \sim \begin{cases}\mathcal{N}\left(\mu-\eta, \sigma^{2}\right) & D_{i-1}>0 \\ \mathcal{N}\left(\mu, \sigma^{2}\right) & D_{i-1}=0 \\ \mathcal{N}\left(\mu+\eta, \sigma^{2}\right) & D_{i-1}<0\end{cases}
$$

Proschan (1994)

Blackwell and Hodges Jr. (1957)
\rightarrow Investigator wants to assign patients with higher values to the experimental group.

Settings

Let $T \in \Gamma \subset\{0,1\}^{N}, D_{i}$ the imbalance after i patients and Y the random variable that models the response, overall group mean $\mu=0, d$ the detectable effect of the two-sided t-test for N patients, power 0.8 and level 0.05 . We use the difference in ranks test statistic and investigate

- sample sizes $N=12,48$
- randomization procedures $R A R, \operatorname{PBR}(4), T B D(4)$ and $M P(2)$ for the settings:

Setting 1-size

$$
Y_{i} \sim \mathcal{N}\left(-\operatorname{sgn}\left(D_{i}\right) \cdot \eta, 1\right)
$$

1. $\eta=0$
2. $\eta=d / 4$
3. $\eta=d / 2$

Setting 2 - power

$$
\begin{aligned}
& Y_{i} \sim \mathcal{N}\left(-\operatorname{sgn}\left(D_{i}\right) \cdot \eta+d \cdot T_{i}, 1\right) \\
& \text { 1. } \eta=0 \\
& \text { 2. } \quad \eta=d / 4 \\
& \text { 3. } \eta=d / 2
\end{aligned}
$$

Simulations

Influence of selection bias on the test size

Method

$$
\because \text { TBD }
$$

$$
\because \text { RAR }
$$

$$
\because \text { PBR }
$$

- For $N=12$ and $d=0$ all procedures yield a conservative randomization test.
- Larger sample size does not protect against selection bias.
- The type-I-error rate of the randomization test for RAR is least susceptible for selection bias.
- The type-l-error of MP, PBR and TBD is strongly elevated.

Influence of selection bias on the power

Method

Conclusions

- Randomization tests generally provide valid basis for inference.
- The randomization test presented in this talk does not protect against selection bias.
- Aim: Develop a new randomization test (reference distribution + test statistic) that is not influenced by selection bias.

References I

Blackwell, D. and J. L. Hodges Jr. (1957). Design for the control of selection bias. Annals of Mathematical Statistics 25, 449-460.
Lehmann (1975) Nonparametrics: Statistical Methods Based on Ranks
Proschan, M. (1994). Influence of selection bias on type 1 error rate under random permuted block designs Statistica Sinica 4, 219-231.
Rosenberger, W.F., and Lachin, J.M. (2016). Randomization in clinical trials - Theory and practice. Wiley.

