

Randomization tests in the presence of selection bias

Diane Uschner and Ralf-Dieter Hilgers

Department for Medical Statistics, RWTH Aachen University

August 26, 2015

Preliminaries

Patient Allocation

- Two-arm parallel group trial: groups E, C.
- Randomization sequence t_{obs} allocates N patients to E and C.

FP7 HEALTH 2013 - 602552

Randomization tests in the presence of selection bia

2 / 12

• Randomization sequence *t_{obs}* allocates *N* patients to *E* and *C*.

Definition

A randomization procedure \mathcal{M} is a probability distribution on $\Gamma = \{E, C\}^N$. \mathcal{M} produces the sequences

$${\sf \Gamma}_{\mathcal{M}}=\{t\in{\sf \Gamma}\mid \mathbb{P}_{\mathcal{M}}(t)
eq 0\}$$

Null hypothesis

 H_0 : For each patient *i* the outcome y_i is the same disregarding of the treatment he receives.

- 1. Observe randomization sequence t_{obs} .
- 2. Observe the response $y_{obs} = (y_1, \dots, y_N)$. \Rightarrow Treat the response as fixed!
- 3. Calculate the randomization distribution of the test statistic:

 $\forall t \in \Omega$: Compute $S(t, y_{obs})$.

4. Then the *p*-value is $p = \sum_{t \in \Omega} \mathbb{P}_{\mathcal{M}}(t) \cdot I(|S(t, y_{obs})| \ge |S(t_{obs}, y_{obs})|)$

Lehmann (1975)

Example: Randomization test for RAR

Ranks of observed response: y = (1, 2, 3, 4), test statistc $S_t = \sum_{i=1}^4 y_i \cdot t_i - \sum_{i=1}^4 y_i \cdot (1 - t_i)$

	t	$\mathbb{P}_{RAR}(t)$	S_t	$J_t = \textit{I}(S_t \geq S_{obs})$	
1	EECC	1/6	-4	1	
*2	ЕСЕС	1/6	-2	1	
3	СЕЕС	1/6	0	0	sity
4	ЕССЕ	1/6	0	0	Den
5	СЕСЕ	1/6	2	1	
6	ССЕЕ	1/6	4	1	

$$\Rightarrow p = \sum_{t} \mathbb{P}_{RAR}(t) \cdot J_t = 4/6$$

Selection bias

Settings

Let $T \in \Gamma \subset \{0,1\}^N$, D_i the imbalance after *i* patients and *Y* the random variable that models the response, overall group mean $\mu = 0$, *d* the detectable effect of the two-sided *t*-test for *N* patients, power 0.8 and level 0.05. We use the difference in ranks test statistic and investigate

- sample sizes N = 12,48
- randomization procedures RAR, PBR(4), TBD(4) and MP(2)

for the settings:

Setting 1 - size	$\begin{array}{l} \textbf{Setting 2 - power} \\ Y_i \sim \mathcal{N}(-\textit{sgn}(D_i) \cdot \eta + d \cdot T_i, 1) \end{array}$	
$Y_i \sim \mathcal{N}(-\textit{sgn}(D_i) \cdot \eta, 1)$		
1. $\eta = 0$	1. $\eta = 0$	
2. $\eta = d/4$	2. $\eta = d/4$	
3. $\eta = d/2$	3. $\eta = d/2$	

Simulations

MSA

Influence of selection bias on the test size

- For N = 12 and d = 0 all procedures yield a conservative randomization test.
- Larger sample size does not protect against selection bias.
- The type-I-error rate of the randomization test for RAR is least susceptible for selection bias.
- The type-I-error of MP, PBR and TBD is strongly elevated.

4,2

Influence of selection bias on the power

- For d = 0, the randomization test does not reach the nominal power.
- The power of MP, PBR and TBD is seriously elevated in case of selection bias.
- Random allocation rule is least affected by selection bias.

 \Rightarrow Larger *reference set* less susceptible to selection bias.

- Randomization tests generally provide valid basis for inference.
- The randomization test presented in this talk does not protect against selection bias.
- Aim: Develop a new randomization test (reference distribution + test statistic) that is not influenced by selection bias.

- Blackwell, D. and J. L. Hodges Jr. (1957). Design for the control of selection bias. Annals of Mathematical Statistics 25, 449–460.
- Lehmann (1975) Nonparametrics: Statistical Methods Based on Ranks
- Proschan, M. (1994). Influence of selection bias on type 1 error rate under random permuted block designs *Statistica Sinica 4*, 219–231.
- Rosenberger, W.F., and Lachin, J.M. (2016). Randomization in clinical trials Theory and practice. Wiley.

