

Understanding variation in n-of-1 trials

Artur Araujo Steven Julious Stephen Senn

Introduction

- N-of-1 trials are performed on a single individual with the purpose of estimating individual treatment effects.
- Series of n-of-1 trials can be used to estimate an overall treatment effect as well as individual treatment effects.
- Distinct individual treatment effects arise as a consequence of a treatment by patient interaction.
- N-of-1 trials are undertaken in small populations when there is expectation a priori of a treatment by patient interaction.

Running the trial

Collecting the data

	Patient	Cycle	Period	Treatment	Outcome
1	1	1	1	1	136.40874
2	1	1	2	0	107.01942
3	2	1	1	0	88.61943
4	2	1	2	1	114.26834
5	2	2	3	1	113.23962
6	2	2	4	0	84.84709
7	2	3	5	1	113.21207
8	2	3	6	0	83.76118
9	3	1	1	0	91.18322
10	3	1	2	1	112.25541
11	3	2	3	0	94.48259
12	3	2	4	1	113.36506

Collecting the data

	Patient	Cycle	Period	Treatment	Outcome
1	1	1	1-2	1-0	29.38932
2	2	1	2-1	1-0	25.64891
3	2	2	3-4	1-0	28.39253
4	2	3	5-6	1-0	29.45090
5	3	1	2-1	1-0	21.07219
6	3	2	4-3	1-0	18.88247
7	4	1	2-1	1-0	18.41385
8	4	2	3-4	1-0	13.11547
9	5	1	2-1	1-0	15.27196
10	5	2	3-4	1-0	18.59932
11	6	1	2-1	1-0	27.25901

Methods

$$y_{ij[k]} = 100 + \tau_{[k]} + b_i + c_{i[k]} + e_{ij} \qquad i = 1, ..., 30 \qquad b_i \sim N(0, 25) \qquad \tau_0 = 0$$
$$j = 1, ..., n_i \qquad c_{i[k]} \sim N(0, \sigma_c^2) \qquad \tau_1 = 20$$

$$k = 0.1$$

$$b_i \sim N(0,25)$$

$$c_{i[k]} \sim N(0, \sigma_c^2)$$

$$e_{ij} \sim N(0,9)$$

$$\tau_0 = 0$$
$$\tau_1 = 20$$

$$\max(n_1, ..., n_{30}) = 8$$

 $\min(n_1, ..., n_{30}) = 4$

4 cycles balanced n-of-1 trials

30 subjects

2 to 4 cycles unbalanced n-of-1 trials

4 cycles balanced n-of-1 trials

IDEAL

30 subjects

2 to 4 cycles unbalanced n-of-1 trials

30 subjects

Conclusions

When the treatment by patient interaction is significant:

- The t-test and fixed effects meta-analysis underestimate the variance of the overall treatment effect estimate.
- The t-test does not permit the estimation of distinct individual treatment effects.
- Both the full mixed-effects model and the mixed-effects model of difference produce unbiased or near unbiased estimates of the variance of the overall treatment effect estimate.

References

- 1. DerSimonian, R., & Laird, N. (1986). Meta-analysis in clinical trials. Control Clin Trials, 7(3), 177-188.
- 2. Kenward, M. G., & Roger, J. H. (1997). Small sample inference for fixed effects from restricted maximum likelihood. *Biometrics*, *53*(3), 983-997.
- 3. Pinheiro, J. C., & Bates, D. M. (2000). Mixed-Effects Models in S and S-PLUS. New York: Springer-Verlag.
- 4. Senn, S. (2002). Cross-over Trials in Clinical Research (2nd ed.). Chichester, England: John Wiley & Sons.
- 5. Jones, B., & Kenward, M. G. (2003). *Design and Analysis of Cross-Over Trials* (2nd ed.). London, England: Chapman & Hall.
- 6. Brown, H., & Prescott, R. (2006). *Applied Mixed Models in Medicine* (2nd ed.). Chichester, England: John Wiley & Sons.
- 7. Lumley, T. (2012). rmeta: Meta-analysis (Version 2.16). Retrieved from http://CRAN.R-project.org/package=rmeta
- 8. Chen, X., & Chen, P. (2014). A comparison of four methods for the analysis of N-of-1 trials. *PLoS One, 9*(2), e87752. doi: 10.1371/journal.pone.0087752
- 9. R Core Team. (2015). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from http://www.R-project.org/
- 10. Bates, D., Maechler, M., Bolker, B., & Walker, S. (2015). lme4: Linear mixed-effects models using Eigen and S4 (Version 1.1-8). Retrieved from http://CRAN.R-project.org/package=lme4
- 11. Højsgaard, U. H. a. S. (2014). A Kenward-Roger Approximation and Parametric Bootstrap Methods for Tests in Linear Mixed Models The R Package pbkrtest. *Journal of Statistical Software, 59*(9).

 Utrecht, 24 August, 2015

Thanks for your attention