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Introduction

I We consider the problem of multiple comparisons between N
treatments and a control.

I Safety is an issue in all phases of clinical trials!

1. treatments may be dropped due to safety issues
2. multiplicity adjustment for the remaining treatments
3. Especially in small populations it is paramount not to ”waste”

parts of the significance levels for unsafe groups.

I Do we still have to pay a price as far as multiplicity is
concerned due to the dropping of unsafe treatments, which
are no longer of interest for efficacy testing?



Model and Notations

I N + 1 groups
I i ∈ {1, . . . ,N} =: I ... treatment groups
I i = 0 ... control group

I xij ... efficacy measurement of patient j in group i
I xij ∼ N(µi , σ

2), independent across the i and the j dimension
I xi ... vector of group i efficacy data
I XK ... {xk : k ∈ K}

I yij ... toxicity measurement of patient j in group i
I yi ... vector of group i toxicity data

I N potential H i
0 : µi − µ0 ≥ 0



The Naive Test Procedure ϕν (Safety Selection Step)

Two-Step Procedure: First safety screening, then efficacy testing

I treatments with mean toxicity exceeding a pre-fixed threshold
ti are regarded as unsafe and therefore dropped



The Naive Test Procedure ϕν (Efficacy Testing Step)

Two-Step Procedure: First safety screening, then efficacy testing

I Only the remaining 3 safe treatments are each tested with a
Dunnet-Test for 3 treatment-control comparisons.



wcFWER Control for the Naive Test Procedure

wcFWERϕν is defined as the maxFWERϕν for varying thresholds ti

I 2 treatments vs control (balanced)

I xij and yij bivariate normal with correlation ρ, variance known



Positive Relation

Definition: Positive Relation
It holds positive relation [König et al., 2006] between efficacy and
toxicity, if for all componentwise non-decreasing f ≥ 0 and for all
componentwise non-increasing g ≥ 0 and all i ∈ {1, . . . ,N} it
holds:

E[f (xi ) · g(yi )] ≤ E[f (xi )] · E[g(yi )]

I slight generalization of association [Esary et al., 1967]
I two important examples

1. xij and yij are bivariate normal with ρi ≥ 0
2. yij is a binary indicator and P(yij = 1|xij) is non-decreasing

Theorem:
Under positive relation between efficacy and toxicity, wcFWERφν is
controlled at level αnom.



Procedures, which control the wcFWER :
1. Conservative Two-Step Procedure ϕc

I wcFWERϕc ≤ αnom

I severe power-loss can be expected, if N is larger than the
number of treatments expected to be selected due to safety



Procedures, which control the wcFWER :
2. Naive Two-Step Procedure ϕν when positive relation
holds

I positive relation holds when it is known that ρi ≥ 0 for
∀i ∈ {1, . . . ,N}

I In this case wcFWERϕν ≤ αnom

I Increased power compared to ϕc



Procedures, which control the wcFWER :
3. ρ-Adjusted Two-Step Procedure ϕρ, when positive
relation does not hold

I αρ is chosen such, that wcFWERϕρ ≤ αnom



The Choice of αρ



Adjusted Test Procedure for Unknown ρ

[Berger and Boos, 1994]

1. Select αCI .

2. Let wcFWERϕν (α′
nom, ρ) denote the wcFWERϕν for the naive

procedure with FWERϕK
= α′

nom. For given αnom find α′
nom,

such that

wcFWERϕν (α′
nom,−1) · αCI + α′

nom · (1− αCI) = αnom.

3. Calculate the left boundary ρ̂l of a one-sided confidence
interval for ρ and use the ρ̂l -adjusted test procedure
controlled for wcFWERϕρ̂l

≤ α′
nom.

wcFWER-Control: Proof in the line of [Tamhane et al., 2012]



Estimation of ρ

I Fisher transformation
I arctanh applied on the sample correlation coefficient ri is

approximately normally distributed with mean 1
2 ln( 1+ρ

1−ρ ) and

sd 1√
ni−3

.

I ρ1 = . . . = ρN = ρ assumption =⇒ narrower CI and higher
α′
nom are possible.

I (approximate) independence of ρ̂l and ϕρ̂l ?



Simulation Study (ρ = −0.3)

I Effects: θ1 = θ2 = θ3 = 0.4

I Tox. Means: τ1 = 0, τ2 = 0.5, τ3 = 1



Simulation Study (ρ = 0)

I Effects: θ1 = θ2 = θ3 = 0.4

I Tox. Means: τ1 = 0, τ2 = 0.5, τ3 = 1



Simulation Study (ρ = 0.3)

I Effects: θ1 = θ2 = θ3 = 0.4

I Tox. Means: τ1 = 0, τ2 = 0.5, τ3 = 1



Simulation Study (ρ = −0.3)

I Effects: θ1 = θ2 = θ3 = 0.6

I Tox. Means: τ1 = 0, τ2 = 0.5, τ3 = 1



Simulation Study (ρ = 0)

I Effects: θ1 = θ2 = θ3 = 0.6

I Tox. Means: τ1 = 0, τ2 = 0.5, τ3 = 1



Simulation Study (ρ = 0.3)

I Effects: θ1 = θ2 = θ3 = 0.6

I Tox. Means: τ1 = 0, τ2 = 0.5, τ3 = 1



Simulation Study (ρ = −0.3)

I Effects: θ1 = θ2 = θ3 = 0.8

I Tox. Means: τ1 = 0, τ2 = 0.5, τ3 = 1



Simulation Study (ρ = 0)

I Effects: θ1 = θ2 = θ3 = 0.8

I Tox. Means: τ1 = 0, τ2 = 0.5, τ3 = 1



Simulation Study (ρ = 0.3)

I Effects: θ1 = θ2 = θ3 = 0.8

I Tox. Means: τ1 = 0, τ2 = 0.5, τ3 = 1



Simulation Study (ρ = −0.3)

I Effects: θ1 = θ2 = θ3 = 1

I Tox. Means: τ1 = 0, τ2 = 0.5, τ3 = 1



Simulation Study (ρ = 0)

I Effects: θ1 = θ2 = θ3 = 1

I Tox. Means: τ1 = 0, τ2 = 0.5, τ3 = 1



Simulation Study (ρ = 0.3)

I Effects: θ1 = θ2 = θ3 = 1

I Tox. Means: τ1 = 0, τ2 = 0.5, τ3 = 1



Simulation Study (ρ = −0.3)

I Effects: θ1 = 1
3θ3, θ2 = 2

3θ3, θ3 = 0.4

I Tox. Means: τ1 = 0, τ2 = 0.5, τ3 = 1



Simulation Study (ρ = 0)

I Effects: θ1 = 1
3θ3, θ2 = 2

3θ3, θ3 = 0.4

I Tox. Means: τ1 = 0, τ2 = 0.5, τ3 = 1



Simulation Study (ρ = 0.3)

I Effects: θ1 = 1
3θ3, θ2 = 2

3θ3, θ3 = 0.4

I Tox. Means: τ1 = 0, τ2 = 0.5, τ3 = 1



Simulation Study (ρ = −0.3)

I Effects: θ1 = 1
3θ3, θ2 = 2

3θ3, θ3 = 0.6

I Tox. Means: τ1 = 0, τ2 = 0.5, τ3 = 1



Simulation Study (ρ = 0)

I Effects: θ1 = 1
3θ3, θ2 = 2

3θ3, θ3 = 0.6

I Tox. Means: τ1 = 0, τ2 = 0.5, τ3 = 1



Simulation Study (ρ = 0.3)

I Effects: θ1 = 1
3θ3, θ2 = 2

3θ3, θ3 = 0.6

I Tox. Means: τ1 = 0, τ2 = 0.5, τ3 = 1



Simulation Study (ρ = −0.3)

I Effects: θ1 = 1
3θ3, θ2 = 2

3θ3, θ3 = 0.8

I Tox. Means: τ1 = 0, τ2 = 0.5, τ3 = 1



Simulation Study (ρ = 0)

I Effects: θ1 = 1
3θ3, θ2 = 2

3θ3, θ3 = 0.8

I Tox. Means: τ1 = 0, τ2 = 0.5, τ3 = 1



Simulation Study (ρ = 0.3)

I Effects: θ1 = 1
3θ3, θ2 = 2

3θ3, θ3 = 0.8

I Tox. Means: τ1 = 0, τ2 = 0.5, τ3 = 1



Simulation Study (ρ = −0.3)

I Effects: θ1 = 1
3θ3, θ2 = 2

3θ3, θ3 = 1

I Tox. Means: τ1 = 0, τ2 = 0.5, τ3 = 1



Simulation Study (ρ = 0)

I Effects: θ1 = 1
3θ3, θ2 = 2

3θ3, θ3 = 1

I Tox. Means: τ1 = 0, τ2 = 0.5, τ3 = 1



Simulation Study (ρ = 0.3)

I Effects: θ1 = 1
3θ3, θ2 = 2

3θ3, θ3 = 1

I Tox. Means: τ1 = 0, τ2 = 0.5, τ3 = 1



Conclusion

I The naive test procedure is adequate, if there is no doubt
about positive relation.

I The conservative test controls the wcFWER , regardless of
how safety selection is done.

I The ρ-adjusted procedure can be a good alternative to the
conservative procedure, if it can be expected that there are
safety issues and

I ρ is known, or
I there is at least a lower boundary for ρ.

I For unknown ρ, an approach that incorporates lower boundary
estimation, may be adequate.
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