Adjusting multiplicity using safety data in many-one comparisons

G. Hlavin, P. Bauer, F. Koenig

Section for Medical Statistics - Medical University of Vienna

June 24, 2015

This project has received funding from the European Union's 7th Framework Programme for research, technological development and demonstration under Grant Agreement no 602552.

▲□▼▲□▼▲□▼▲□▼ □ ● ●

Introduction

- We consider the problem of multiple comparisons between N treatments and a control.
- Safety is an issue in all phases of clinical trials!
 - 1. treatments may be dropped due to safety issues
 - 2. multiplicity adjustment for the remaining treatments
 - 3. Especially in small populations it is paramount not to "waste" parts of the significance levels for unsafe groups.

Do we still have to pay a price as far as multiplicity is concerned due to the dropping of unsafe treatments, which are no longer of interest for efficacy testing?

Model and Notations

• N + 1 groups

- $i \in \{1, \ldots, N\} =: I \dots$ treatment groups
- $i = 0 \dots$ control group
- x_{ij} ... efficacy measurement of patient j in group i
 - $x_{ij} \sim N(\mu_i, \sigma^2)$, independent across the *i* and the *j* dimension

- x_i ... vector of group i efficacy data
- $\blacktriangleright \mathbf{X}_K \dots \{\mathbf{x}_k : k \in K\}$
- y_{ij} ... toxicity measurement of patient j in group i
 - **y**_{*i*} ... vector of group *i* toxicity data
- N potential $H_0^i: \mu_i \mu_0 \ge 0$

The Naive Test Procedure φ_{ν} (Safety Selection Step)

Two-Step Procedure: First safety screening, then efficacy testing We start with N=5 Treatments vs. Control

	Tr. 1	Tr. 2	Tr. 3	Tr. 4	Tr. 5
Safety Selection	$\overline{y}_1 \leq t_1$	$\overline{y}_2 \leq t_2$	$\overline{y}_3 > t_3$	$\overline{y}_4 > t_4$	$\overline{y}_5 \leq t_5$

treatments with mean toxicity exceeding a pre-fixed threshold t_i are regarded as unsafe and therefore dropped

The Naive Test Procedure φ_{ν} (Efficacy Testing Step)

Two-Step Procedure: First safety screening, then efficacy testing We start with N=5 Treatments vs. Control

	Tr. 1	Tr. 2	Tr. 3	Tr. 4	Tr. 5
Safety Selection	$\bar{y}_1 \leq t_1$	$\overline{y}_2 \leq t_2$	$\overline{y}_3 > t_3$	$\overline{y}_4 > t_4$	$\bar{y}_5 \leq t_5$
	Ţ	Ļ	*	*	
Efficacy Tests	Dunnett-T. $\alpha = \alpha_{nom}$ 3 Tr. vs. 1 Ctrl	Dunnett-T. $\alpha = \alpha_{nom}$ 3 Tr. vs. 1 Ctrl			Dunnett-T. $\alpha = \alpha_{nom}$ 3 Tr. vs. 1 Ctrl

 Only the remaining 3 safe treatments are each tested with a Dunnet-Test for 3 treatment-control comparisons.

wcFWER Control for the Naive Test Procedure

 $wcFWER_{\varphi_{\nu}}$ is defined as the max $FWER_{\varphi_{\nu}}$ for varying thresholds t_i

- 2 treatments vs control (balanced)
- x_{ij} and y_{ij} bivariate normal with correlation ρ , variance known

(日)、

э.

Positive Relation

Definition: Positive Relation

It holds *positive relation* [König et al., 2006] between efficacy and toxicity, if for all componentwise non-*de*creasing $f \ge 0$ and for all componentwise non-*in*creasing $g \ge 0$ and all $i \in \{1, ..., N\}$ it holds:

$\mathbb{E}[f(\mathbf{x}_i) \cdot g(\mathbf{y}_i)] \leq \mathbb{E}[f(\mathbf{x}_i)] \cdot \mathbb{E}[g(\mathbf{y}_i)]$

- slight generalization of association [Esary et al., 1967]
- two important examples
 - 1. x_{ij} and y_{ij} are bivariate normal with $\rho_i \ge 0$
 - 2. y_{ij} is a binary indicator and $P(y_{ij} = 1 | x_{ij})$ is non-decreasing

Theorem:

Under positive relation between efficacy and toxicity, wcFWER_{\phi_{\nu}} is controlled at level $\alpha_{\rm nom}.$

Procedures, which control the *wcFWER*: 1. Conservative Two-Step Procedure φ_c

We start with N=5 Treatments vs. Control

- $wcFWER_{\varphi_c} \leq \alpha_{nom}$
- severe power-loss can be expected, if N is larger than the number of treatments expected to be selected due to safety

Procedures, which control the *wcFWER*: 2. Naive Two-Step Procedure φ_{ν} when positive relation holds

▶ positive relation holds when it is known that $\rho_i \ge 0$ for $\forall i \in \{1, ..., N\}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- In this case $wcFWER_{\varphi_{\nu}} \leq \alpha_{nom}$
- Increased power compared to φ_c

Procedures, which control the *wcFWER*: 3. ρ -Adjusted Two-Step Procedure φ_{ρ} , when positive relation does not hold

We start with N=5 Treatments vs. Control

	Tr. 1	Tr. 2	Tr. 3	Tr. 4	Tr. 5
Safety Selection	$\bar{y}_1 \leq t_1$	$\overline{y}_2 \leq t_2$	$\overline{y}_3 > t_3$	$\overline{y}_4 > t_4$	$\bar{y}_5 \leq t_5$
	Ţ		×	*	Ţ
Efficacy Tests	Dunnett-T. $\alpha_{\rho} < \alpha_{nom}$ 3 Tr. vs. 1 Ctrl	Dunnett-T. $\alpha_{\rho} < \alpha_{nom}$ 3 Tr. vs. 1 Ctrl			Dunnett-T. $\alpha_{\rho} < \alpha_{nom}$ 3 Tr. vs. 1 Ctrl

• α_{ρ} is chosen such, that $wcFWER_{\varphi_{\rho}} \leq \alpha_{nom}$

The Choice of α_{ρ}

Adjusted error levels (M1ZT)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Adjusted Test Procedure for Unknown ρ

[Berger and Boos, 1994]

- 1. Select α_{CI} .
- 2. Let $wcFWER_{\varphi_{\nu}}(\alpha'_{nom}, \rho)$ denote the $wcFWER_{\varphi_{\nu}}$ for the naive procedure with $FWER_{\varphi_{K}} = \alpha'_{nom}$. For given α_{nom} find α'_{nom} , such that

wcFWER_{$$\varphi_{\nu}$$} $(\alpha'_{nom}, -1) \cdot \alpha_{CI} + \alpha'_{nom} \cdot (1 - \alpha_{CI}) = \alpha_{nom}.$

3. Calculate the left boundary $\hat{\rho}_l$ of a one-sided confidence interval for ρ and use the $\hat{\rho}_l$ -adjusted test procedure controlled for $wcFWER_{\varphi \hat{\rho}_l} \leq \alpha'_{nom}$.

wcFWER-Control: Proof in the line of [Tamhane et al., 2012]

Estimation of ρ

- Fisher transformation
 - arctanh applied on the sample correlation coefficient r_i is approximately normally distributed with mean $\frac{1}{2} \ln(\frac{1+\rho}{1-\rho})$ and sd $\frac{1}{\sqrt{n_i-3}}$.

- ▶ $\rho_1 = \ldots = \rho_N = \rho$ assumption \implies narrower CI and higher α'_{nom} are possible.
- (approximate) independence of $\hat{\rho}_I$ and $\varphi_{\hat{\rho}_I}$?

• Effects: $\theta_1 = \theta_2 = \theta_3 = 0.4$

• Tox. Means: $\tau_1 = 0, \tau_2 = 0.5, \tau_3 = 1$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

・ロト ・聞ト ・ヨト ・ヨト

æ

- Effects: $\theta_1 = \theta_2 = \theta_3 = 0.4$
- Tox. Means: $\tau_1 = 0, \tau_2 = 0.5, \tau_3 = 1$

• Effects: $\theta_1 = \theta_2 = \theta_3 = 0.4$

• Tox. Means: $\tau_1 = 0, \tau_2 = 0.5, \tau_3 = 1$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

• Effects: $\theta_1 = \theta_2 = \theta_3 = 0.6$

• Tox. Means: $\tau_1 = 0, \tau_2 = 0.5, \tau_3 = 1$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

・ロト ・聞ト ・ヨト ・ヨト

æ

- Effects: $\theta_1 = \theta_2 = \theta_3 = 0.6$
- Tox. Means: $\tau_1 = 0, \tau_2 = 0.5, \tau_3 = 1$

• Effects: $\theta_1 = \theta_2 = \theta_3 = 0.6$

• Tox. Means: $\tau_1 = 0, \tau_2 = 0.5, \tau_3 = 1$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

・ロト ・聞ト ・ヨト ・ヨト

æ

- Effects: $\theta_1 = \theta_2 = \theta_3 = 0.8$
- Tox. Means: $\tau_1 = 0, \tau_2 = 0.5, \tau_3 = 1$

・ロト ・聞ト ・ヨト ・ヨト

æ

- Effects: $\theta_1 = \theta_2 = \theta_3 = 0.8$
- Tox. Means: $\tau_1 = 0, \tau_2 = 0.5, \tau_3 = 1$

• Effects: $\theta_1 = \theta_2 = \theta_3 = 0.8$

• Tox. Means: $\tau_1 = 0, \tau_2 = 0.5, \tau_3 = 1$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

・ロト ・聞ト ・ヨト ・ヨト

æ

• Effects: $\theta_1 = \theta_2 = \theta_3 = 1$

• Tox. Means: $\tau_1 = 0, \tau_2 = 0.5, \tau_3 = 1$

・ロト ・聞ト ・ヨト ・ヨト

æ

- Effects: $\theta_1 = \theta_2 = \theta_3 = 1$
- Tox. Means: $\tau_1 = 0, \tau_2 = 0.5, \tau_3 = 1$

• Effects: $\theta_1 = \theta_2 = \theta_3 = 1$

• Tox. Means: $\tau_1 = 0, \tau_2 = 0.5, \tau_3 = 1$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

• Effects: $\theta_1 = \frac{1}{3}\theta_3, \ \theta_2 = \frac{2}{3}\theta_3, \ \theta_3 = 0.4$

• Tox. Means: $\tau_1 = 0, \tau_2 = 0.5, \tau_3 = 1$

• Effects: $\theta_1 = \frac{1}{3}\theta_3, \ \theta_2 = \frac{2}{3}\theta_3, \ \theta_3 = 0.4$

• Tox. Means: $\tau_1 = 0, \tau_2 = 0.5, \tau_3 = 1$

• Effects: $\theta_1 = \frac{1}{3}\theta_3, \ \theta_2 = \frac{2}{3}\theta_3, \ \theta_3 = 0.4$

• Tox. Means: $\tau_1 = 0, \tau_2 = 0.5, \tau_3 = 1$

• Effects: $\theta_1 = \frac{1}{3}\theta_3, \ \theta_2 = \frac{2}{3}\theta_3, \ \theta_3 = 0.6$

• Tox. Means: $\tau_1 = 0, \tau_2 = 0.5, \tau_3 = 1$

<ロト < @ ト < E ト < E ト E の Q ()</p>

• Effects: $\theta_1 = \frac{1}{3}\theta_3, \ \theta_2 = \frac{2}{3}\theta_3, \ \theta_3 = 0.6$

• Tox. Means: $\tau_1 = 0, \tau_2 = 0.5, \tau_3 = 1$

▲ロト ▲聞 ト ▲ 国 ト ▲ 国 ・ の Q ()~

э

- Effects: $\theta_1 = \frac{1}{3}\theta_3, \ \theta_2 = \frac{2}{3}\theta_3, \ \theta_3 = 0.6$
- Tox. Means: $\tau_1 = 0, \tau_2 = 0.5, \tau_3 = 1$

イロト イポト イヨト イヨト

э

- Effects: $\theta_1 = \frac{1}{3}\theta_3, \ \theta_2 = \frac{2}{3}\theta_3, \ \theta_3 = 0.8$
- Tox. Means: $\tau_1 = 0, \tau_2 = 0.5, \tau_3 = 1$

• Effects: $\theta_1 = \frac{1}{3}\theta_3, \ \theta_2 = \frac{2}{3}\theta_3, \ \theta_3 = 0.8$

• Tox. Means: $\tau_1 = 0, \tau_2 = 0.5, \tau_3 = 1$

<ロト < @ ト < E ト < E ト E の Q ()</p>

• Effects: $\theta_1 = \frac{1}{3}\theta_3$, $\theta_2 = \frac{2}{3}\theta_3$, $\theta_3 = 0.8$

• Tox. Means: $\tau_1 = 0, \tau_2 = 0.5, \tau_3 = 1$

• Effects: $\theta_1 = \frac{1}{3}\theta_3$, $\theta_2 = \frac{2}{3}\theta_3$, $\theta_3 = 1$

• Tox. Means: $\tau_1 = 0, \tau_2 = 0.5, \tau_3 = 1$

<ロト < @ ト < E ト < E ト E の Q ()</p>

• Effects: $\theta_1 = \frac{1}{3}\theta_3$, $\theta_2 = \frac{2}{3}\theta_3$, $\theta_3 = 1$

• Tox. Means: $\tau_1 = 0, \tau_2 = 0.5, \tau_3 = 1$

<ロト < @ ト < E ト < E ト E の Q ()</p>

• Effects: $\theta_1 = \frac{1}{3}\theta_3$, $\theta_2 = \frac{2}{3}\theta_3$, $\theta_3 = 1$

• Tox. Means: $\tau_1 = 0, \tau_2 = 0.5, \tau_3 = 1$

Conclusion

- The naive test procedure is adequate, if there is no doubt about positive relation.
- The conservative test controls the wcFWER, regardless of how safety selection is done.
- The ρ-adjusted procedure can be a good alternative to the conservative procedure, if it can be expected that there are safety issues and
 - ρ is known, or
 - there is at least a lower boundary for ρ .
- For unknown ρ, an approach that incorporates lower boundary estimation, may be adequate.

Berger, R. L. and Boos, D. D. (1994).

P values maximized over a confidence set for the nuisance parameter.

Journal of the American Statistical Association, 89(427):1012–1016.

- Esary, J. D., Proschan, F., Walkup, D. W., et al. (1967).
 Association of random variables, with applications.
 The Annals of Mathematical Statistics, 38(5):1466–1474.
 - König, F., Bauer, P., and Brannath, W. (2006). An adaptive hierarchical test procedure for selecting safe and efficient treatments.

Biometrical journal, 48(4):663–678.

Tamhane, A. C., Wu, Y., and Mehta, C. R. (2012). Adaptive extensions of a two-stage group sequential procedure for testing primary and secondary endpoints (i): unknown correlation between the endpoints. *Statistics in medicine*, 31(19):2027–2040.