

# Assessment of randomization procedures based on single sequences under selection and chronological bias

#### Ralf-Dieter Hilgers, Simon Langer

Department of Medical Statistics, RWTH-Aachen University

Friday 10th July 2015







Introduction











FP7 HEALTH 2013 - 602552



Ralf-Dieter

Assessment of randomization procedures based on single sequences under selectior -2 / 24



- 21 out of 63 Orphan drug legislations involve open label studies (Joppi, 2013)
- treatment comparisons should involve consideration of the potential contribution of bias to the p-value (ICH E9)
- no recommendation to give scientific arguments for selection of randomization procedure
- no uniform performance of randomization procedures
- Clinical Scenario Evaluation (Benda 2010)







Propose a tool for assessing the impact of selection bias as well as chronological bias on the type one error probability for a given randomization sequence (procedure) and thus enabling a scientific discussion of the appropriate choice of the randomization procedure







#### Two arm parallel group design

$$y_i = \mu_A Z_i + \mu_B (1 - Z_i) + \tau_i + \epsilon_i, \quad 1 \le i \le n_A + n_B \tag{1}$$

allocation

$$Z_i = \begin{cases} 1 & \text{if patient } i \text{ is allocated to group } A \\ 0 & \text{if patient } i \text{ is allocated to group } B \end{cases}$$

- $\mu_j$  expected response under treatment j = A, B
- $\tau_i$  denotes the fixed unobserved "bias" effect acting on the response of patient *i*
- errors  $\epsilon_i$  iid  $N(0, \sigma^2)$







Aim: test the hypotheses 
$$H_0: \mu_A = \mu_B$$
 vs.  $H_1: \mu_A \neq \mu_B$ 

use t-Test (under misspecification)

$$T = \frac{\sqrt{\frac{n_A n_B}{n_A + n_B}} (\tilde{y}_A - \tilde{y}_B)}{\frac{1}{n_A + n_B - 2} \left(\sum_{i=1}^n Z_i (y_i - \tilde{y}_A)^2 + \sum_{i=1}^n (1 - Z_i) (y_i - \tilde{y}_B)^2\right)}$$

where 
$$\tilde{y}_{A} = \frac{1}{n_{A}} \sum_{i=1}^{n} y_{i} Z_{i}$$
;  $\tilde{y}_{B} = \frac{1}{n_{B}} \sum_{i=1}^{n} y_{i} (1 - Z_{i})$ ;  $n = n_{A} + n_{B}$ 





### Setting - Theorem

**Theorem**: Under  $H_0: \mu_A = \mu_B$  the type 1 error probability in (1) (under misspecification) for the allocation sequence  $\mathbf{Z} = (Z_1, \dots, Z_n)$  is

$$P(|T| > t_{n_A+n_B-2}(1-\alpha/2)|\mathbf{Z}) = F_{n_A+n_B-2,\theta_1,\theta_2}(t_{n_A+n_B-2}(\alpha/2)) + F_{n_A+n_B-2,-\theta_1,\theta_2}(t_{n_A+n_B-2}(\alpha/2)).$$

 $F_{n_A+n_B-2,\theta_1,\theta_2}$  denotes the distribution function of the doubly non-central t-distribution with  $n_A + n_B - 2$  degrees of freedom and parameters

$$\theta_1 = \frac{1}{\sigma} \sqrt{\frac{n_A n_B}{n_A + n_B}} \left( \tilde{\tau}_A - \tilde{\tau}_B \right) \quad \theta_2 = \frac{1}{\sigma^2} \left[ \sum_{i=1}^n \tau_i^2 - n_A \tilde{\tau}_A^2 - n_B \tilde{\tau}_B^2 \right]$$

where 
$$\tilde{\tau}_A = \frac{1}{n_A} \sum_{i=1}^n \tau_i Z_i$$
;  $\tilde{\tau}_B = \frac{1}{n_B} \sum_{i=1}^n \tau_i (1 - Z_i)$ 

 $\langle 0 \rangle$ 



Sketch of the proof:

for the given allocation vector  $\mathbf{Z} = (Z_1, \ldots, Z_n)$ 

$$\tilde{y}_{A} - \tilde{y}_{B} \sim N\left(\mu_{A} - \mu_{B} + \tilde{\tau}_{A} - \tilde{\tau}_{B}, \sigma^{2} \frac{n_{A} + n_{B}}{n_{A} n_{B}}\right)$$

where 
$$\tilde{\tau}_A = \frac{1}{n_A} \sum_{i=1}^n \tau_i Z_i$$
;  $\tilde{\tau}_B = \frac{1}{n_B} \sum_{i=1}^n \tau_i (1 - Z_i)$ 







for the allocation vector  $\mathbf{Z} = (Z_1, \dots, Z_n)$ 

$$\sum_{i=1}^{n} Z_{i}(y_{i} - \tilde{y}_{A})^{2} + \sum_{i=1}^{n} (1 - Z_{i})(y_{i} - \tilde{y}_{B})^{2} \sim \chi_{n_{A} + n_{B} - 2}(\theta_{2})$$

with non-centrality parameter

$$\theta_2 = \frac{1}{\sigma} \left( \sum_{i=1}^n Z_i (\tau_i - \tilde{\tau}_A)^2 + \sum_{i=1}^n (1 - Z_i) (\tau_i - \tilde{\tau}_B)^2 \right)$$
$$= \frac{1}{\sigma} \left[ \sum_{i=1}^n \tau_i^2 - n_A \tilde{\tau}_A^2 - n_B \tilde{\tau}_B^2 \right]$$







Thus T follows a doubly non-central t distribution with  $n_A + n_B - 2$  degrees of freedom and non-centrality parameters (Johnson, Kotz, Balakrishnan, 1995, Robins, 1948)

$$\theta_{1} = \frac{1}{\sigma} \sqrt{\frac{n_{A}n_{B}}{n_{A} + n_{B}}} \left(\mu_{A} - \mu_{B} + \tilde{\tau}_{A} - \tilde{\tau}_{B}\right) = \frac{1}{\sigma} \sqrt{\frac{n_{A}n_{B}}{n_{A} + n_{B}}} \left(\tilde{\tau}_{A} - \tilde{\tau}_{B}\right)$$
$$\theta_{2} = \frac{1}{\sigma^{2}} \left[\sum_{i=1}^{n} \tau_{i}^{2} - n_{A}\tilde{\tau}_{A}^{2} - n_{B}\tilde{\tau}_{B}^{2}\right]$$

using the properties of the distribution (Kocherlakota, 1991)

$$\mathcal{F}_{
u, heta_1, heta_2}(t) = 1 - \mathcal{F}_{
u,- heta_1, heta_2}(-t)$$



MSA



- CR Complete randomization is accomplished by tossing a fair coin, so the probability that patient i will receive treatment 1 is always  $\frac{1}{2}$
- RAR Random Allocation rule, fix total sample size N. Randomize so that half the patients receive treatment 1
- PBR (Permuted Block Randomization) Implementation of RAR within k Blocks of size  $m_s, 1 \leq s \leq k$
- BSD(a) (Big Stick design) CR allow for imbalance within a limit a





### Assessment - Selection Bias Model

With  $N_j(i-1)$  is the number of treatment j assignments after (i-1) assignments and

$$p_A(i-1) = rac{n_A - N_A(i-1)}{(n_A + n_B) - (N_A(i-1) + N_B(i-1))}, \quad n_A = n_B$$

the selection biasing policy (Tamm, 2012), according to convergence strategy (Blackwell, 1957),  $q \in [\frac{1}{2}, 1]$ 

$$E(y_i) = \begin{cases} \mu_A Z_i + \mu_B (1 - Z_i) + \eta & \text{if } p_A(i - 1) > q \\ \mu_A Z_i + \mu_B (1 - Z_i) & \text{if } 1 - q \le p_A(i - 1) \le q \\ \mu_A Z_i + \mu_B (1 - Z_i) - \eta & \text{if } p_A(i - 1) < 1 - q \end{cases}$$

Then

$$\tau_i = \eta \left[ \mathbb{1}_{(q,1]}(p_A(i-1)) - \mathbb{1}_{[0,1-q)}(p_A(i-1)) \right]$$







Table: Empirical type 1 error probability by different cut-off values for a two sided t-test with 2n = 40;  $\alpha = 0.05$ ,  $\beta = 0.2$  and selection effect  $\eta = \frac{\delta}{2} = 0.45$  under PBR

| Cutoff | Type 1 Error rate |        |         |  |
|--------|-------------------|--------|---------|--|
| q      | PBR(4)            | PBR(8) | PBR(10) |  |
| 1/2    | 0.191             | 0.134  | 0.118   |  |
| 2/3    | 0.145             | 0.134  | 0.086   |  |
| 1      | 0.050             | 0.050  | 0.048   |  |

using SAS with 10 000 replications





Table: Empirical type 1 error probability of a two sided t-test with 2*n*;  $\alpha = 0.05$ ,  $\beta = 0.2$  and selection bias effect  $\eta = \frac{\delta(2n)}{2}$ 

| 2n | $\delta(2n)$ | CR    | RAR   | PBR(4) | BSD (2) |
|----|--------------|-------|-------|--------|---------|
| 8  | 2.381        | 0.058 | 0.102 | 0.141  | 0.064   |
| 20 | 1.325        | 0.054 | 0.082 | 0.177  | 0.075   |
| 32 | 1.024        | 0.055 | 0.072 | 0.188  | 0.083   |
| 40 | 0.909        | 0.053 | 0.071 | 0.195  | 0.088   |

using R with 100 000 replications







Tamm (2012) found:

- empirical type I error increases with smaller blocksize under PBR
- empirical type I error decreases with higher q
- elevation are substantial even for q=2/3







• long recruitment time in Rare Diseases, (EMA, 2006)

- changes in population characteristics
- learning effect in therapy / surgical experience (Hopper, 2007)
- change in diagnosis (FDA, 2011), etc.
- special form of accidential bias, when considering a time-heterogeneous covariate

$$\tau_i = \lambda \begin{cases} \frac{i}{n_A + n_B} \\ \mathbb{1}_{i \ge c}(i) \\ \log(\frac{i}{n_A + n_B}) \end{cases}$$

linear time trend stepwise trend log trend







Tamm (2014) found, that

- using t-test in presence of time trends results in conservative test decisions under permuted block randomizations even for small time trends; Blocked ANOVA should be used
- medium block sizes already achieve a good reduction of the inflated type I error rate in worst-case scenarios





# Assessment - Selection and chronological bias for special sequences

all Sequences assume  $n_A = n_B = n/2$ 

| Sequence              | Bias       | $\theta_1$                           | $\theta_2$                               | type 1 error<br>probability |
|-----------------------|------------|--------------------------------------|------------------------------------------|-----------------------------|
| Alternating           | Selection  | $-\frac{\eta}{\sigma}\sqrt{n}/2$     | 0                                        | 0.074                       |
| 10101                 | Time Trend | $\frac{\lambda}{\sigma}\sqrt{n}/2$   | $rac{\lambda^2}{\sigma^2}n(n^2-4)/12$   | 0.000                       |
| Separating<br>111000  | Selection  | $-\frac{\eta}{\sigma}\sqrt{1/n}$     | $\frac{\eta^2}{\sigma^2}(n-2)/n$         | 0.050                       |
|                       | Time Trend | $\frac{\lambda}{\sigma}\sqrt{n^3}/4$ | $\frac{\lambda^2}{\sigma^2}n(n^2-4)/48$  | 0.999                       |
| avoid TT<br>1001 1001 | Selection  | $-\frac{\eta}{\sigma}\sqrt{n}/2$     | $\frac{\eta^2}{\sigma^2}$                | 0.050                       |
|                       | Time Trend | 0                                    | $\frac{\lambda^2}{\sigma^2}n(-1+n^2)/12$ | 0.000                       |

type 1 error probability setting:  $n_A = n_B = 6, \eta = \frac{\delta(12)}{4} = 0.45, \lambda = \sigma = 1$ 





(Dead)

weighted additive (selection and chronological) bias model

$$\tau_{i} = \underbrace{\lambda \frac{i}{n_{A} + n_{B}}}_{time \ trend} + \underbrace{\eta \operatorname{sign}(N_{A}(i-1) - N_{B}(i-1))}_{selection \ bias \ with \ q = \frac{1}{2}}$$

- $\bullet$  weights via definition of  $\lambda$  and  $\eta$
- different shape of time trend can be incorporated
- relaxed version of selection bias possible
- multiplicative could also be done





### Assessment - Assessment of Bias for RAR (N=12)





setting: 
$$n_A = n_B = 6, \eta = \frac{\delta(12)}{4} = 0.45, \lambda = \sigma = 1$$

|                           | Measure | p value           |        |  |
|---------------------------|---------|-------------------|--------|--|
| 0.016<br>0.012<br>0.008 - |         | Selection<br>Bias | Linear |  |
|                           |         |                   | Time   |  |
|                           |         |                   | Trend  |  |
|                           | min     | 0.0397            | 0.0415 |  |
|                           | ×05     | 0.0481            | 0.0414 |  |
|                           | x25     | 0.0518            | 0.0423 |  |
| 0.000                     | ×50     | 0.0611            | 0.0449 |  |
|                           | mean    | 0.0635            | 0.0500 |  |
|                           | x75     | 0.0724            | 0.0520 |  |
|                           | ×95     | 0.0991            | 0.0736 |  |
|                           | max     | 0.1086            | 0.1188 |  |
|                           |         |                   |        |  |
|                           | sd      | 0.0151            | 0.0115 |  |





## Assessment - Assessment of Bias for BSD(2) (N=12)





setting: 
$$n_A = n_B = 6, \eta = \frac{\delta(12)}{4} = 0.45, \lambda = \sigma = 1$$

|       | Mossuro   | p value           |        |  |
|-------|-----------|-------------------|--------|--|
|       | INICASULE | Selection<br>Bias | Linear |  |
|       |           |                   | Time   |  |
|       |           |                   | Trend  |  |
| 0.016 | min       | 0.0342            | 0.0415 |  |
| 0.012 | ×05       | 0.0370            | 0.0415 |  |
| 0.008 | x25       | 0.0483            | 0.0420 |  |
| 0.000 | ×50       | 0.0537            | 0.0441 |  |
|       | mean      | 0.0557            | 0.0462 |  |
|       | x75       | 0.0619            | 0.0481 |  |
|       | ×95       | 0.0792            | 0.0576 |  |
|       | max       | 0.1086            | 0.0717 |  |
|       |           |                   |        |  |
|       | sd        | 0.0129            | 0.0059 |  |





## Assessment - Comparison RAR and BSD(2) (N=12)





Ralf-Dieter



- presented a framework for scientific evaluation of randomization procedures on bias
- other randomization procedures are easy to implement
- this evaluation should be part of the TSAP
- dichotomous endpoint / survival endpoint could be evaluated by simulation (work under progress by Marcia Rückbeil)
- Cave: this is the wrong test (!) but mirrors the practical situation, use randomization tests to reflect the randomzation argument
- R package (randomizeR) coming soon, see website (http://www.ideal.rwth-aachen.de)





### References





Balakrishnan N, Kotz S, Johnson NL. Wiley: New York, 1995.

Blackwell D, Hodges J. Annals of Mathematical Statistics 1957; 25:449-460.

ICH E9 (1998). Statistical principles for clinical trials.

Joppi R, Bertele' V, Garattini S. (2013). European Journal of Clinical Pharmacology 2013; 69:1009-1024.

Kennes, L. N., Cramer, E., Hilgers, R. E., and Heussen, N. (2011). Statistics in Medicine 2011; 30:2573-2581.

Langer, S. (2012). Master Thesis Mathematics RWTH Aachen



Rosenberger W, Lachin J. Wiley: New York, 2002.

Tamm M, Hilgers RD. Methods of Information in Medicine 2012; 51:138-143.

Tamm M, Hilgers RD. Methods of Information in Medicine 2014; 53:501-510.



