

Confirmatory testing for a beneficial treatment effect in dose-response studies using MCP-Mod and an adaptive interim analysis

Franz König¹

¹Medical University of Vienna, Austria Center for Medical Statistics, Informatics and Intelligent Systems Franz.Koenig@meduniwien.ac.at www.meduniwien.ac.at/user/franz.koenig

Isaac Newton Institute July 9, 2015

This project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement number FP HEALTH 2013-602552.

Koenig (IMS)

Acknowledgments of collaborators

- Frank Bretz (Novartis)
- Bjoern Bornkamp (Novartis)
- Ekkehard Glimm (Novartis)
- Alexandra Graf (Medical University of Vienna)
- Sergii Krasnozhon (Medical University of Vienna)
- Gernot Wassmer (Aptiv Solutions, an ICON plc company)

This work has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement number FP HEALTH 2013–602552 (IDEAL - http://www.ideal.rwth-aachen.de/).

4 **A** N A **B** N A **B** N

Introduction

- Traditionally two main analysis strategies for phase II trials: multiple comparisons (MCP) of contrasts between doses and modeling of dose response (DR)
- Bretz et al. (2005) proposed an unified approach combining the advantages of MCP and modeling - MCPMod:
 - Set of candidate models to account for model uncertainty
 - Test PoC using MCP with optimal model contrasts
 - Select a model and estimate target doses (e.g., MED, ED50, ...)
 - Qualification Opinion adopted by CHMP (2014)

Our goal today:

Use framework of MCPMod to

- allow testing of individual dose-control comparisons
- allow design modifications at an adaptive interim analysis
- increase the power of declaring effective doses statistically significant

Overview of MCP-Mod

(BRETZ ET AL. 2005, BORNKAMP ET AL. 2009, PINHEIRO ET AL. 2014, ...)

Statistical model

- Assume that a response Y is observed for k + 1 parallel groups corresponding to doses d₀,d₁,..., d_k (d₀ typically placebo)
- Assume that the Y_{ij} for subject j in group i is modeled as

$$Y_{ij} = f(d_i, \theta) + \epsilon_{ij}, \quad \epsilon_{ij} \stackrel{\mathrm{ind}}{\sim} \mathcal{N}(0, \sigma^2), \ i = 0, \dots, k, j = 1, \dots, n_i,$$

- Denote the true (unknown) effect at dose *i* with $\mu_i = f(d_i, \theta)$
- MCP-Mod uses classical contrast tests, with multiplicity adjustment, to detect evidence in favor of a dose response signal
 - based on a pre-specified set M of M parameterized candidate models with corresponding model functions f_m(d, θ_m), m = 1,..., M

Candidate model set

- Use prior guesses to determine the parameters of the standardized models θ⁰_m determining the model shapes
- Optimal contrasts c_m = (c_{m0}, c_{m1},..., c_{mk})' depends on best guesses for standardized model.

Contrast test for dose response signal detection (PoC)

• Single contrast test for detecting the *m*th model shape:

$$T_m = \frac{\sum_{i=0}^k c_{mi} \bar{Y}_i}{S \sqrt{\sum_{i=0}^k c_{mi}^2 / n_i}}, \quad m = 1, \dots, M,$$

- Test statistics are jointly multivariate-t distributed with correlations determined by the model contrasts
- Multiplicity adjusted critical value q or adjusted p-values pm for individual tests of models derived from multivariate t-distribution accounting for the different models
- Dose response signal established if the maximum test statistic max_m T_m > q or the minimum adjusted p-value min_m p_m < α

A (10) A (10)

Efficacy claims for individual doses using MCP-Mod

- Original MCP-Mod approach is designed for Phase II studies and enables only the detection of a dose response signal at the MCP step
- Often, efficacy claims for individual doses are of interest in Phase III
- Formally interested in testing the k elementary null hypotheses

 $H_i: \mu_i \le \mu_0$, versus $A_i: \mu_i > \mu_0$, i = 1, ..., k

but within the framework of MCP-Mod

Combine two different methodological concepts

MCP-Mod contrast test and closed testing principle

For *k* hypotheses H_1, \ldots, H_k :

- Specify a level α test for all $H_J = \bigcap_{i \in J} H_i$, $J \subseteq \{1, \ldots, k\}$, and
- Reject H_i if and only if all H_J with $i \in J$ are rejected

Proposed approach: Details

 Take the original contrast test from MCP-Mod as the level α test for the global intersection hypothesis

 $H_1 \cap H_2 ... \cap H_k : \mu_1, ..., \mu_k \le \mu_0$

- Use the same strategy for all other intersections hypotheses
- Our proposal for a level α test for $H_J = \bigcap_{i \in J} H_i$, $J \subseteq \{1, \ldots, k\}$
 - Test H_J with MCP-Mod contrast tests using doses $i \in J$ only.
 - Use the same set of pre-specified set *M* of candidates models for each intersection hypothesis *H_J*, but
 - But calculate new optimal contrasts for each H_J and model using only doses i ∈ J
 - This means for each intersection hypothesis we have to perform as many contrast tests as models are included in \mathcal{M} .

3

・ロト ・ 四ト ・ ヨト ・ ヨト

- Consider an example with 4 doses and placebo
- Assume 6 candidate models, with corresponding optimal coefficients for testing H₁ ∩ H₂ ∩ H₃ ∩ H₄ : μ₁, μ₂, μ₃, μ₄ ≤ μ₀

- Consider an example with 4 doses and placebo
- Assume 6 candidate models, with corresponding optimal coefficients for testing H₁ ∩ H₂ ∩ H₄ : μ₁, μ₂, μ₄, ≤ μ₀

A .

- Consider an example with 4 doses and placebo
- Assume 6 candidate models, with corresponding optimal coefficients for testing H₁ ∩ H₄ : μ₁, μ₄ ≤ μ₀

A .

- Consider an example with 4 doses and placebo
- Assume 6 candidate models, with corresponding optimal coefficients for festing H₄ : μ₄ ≤ μ₀

For the test of an elementary null hypothesis this results in the same contrast for all models. This gives a *t*-test at full level α .

A .

< ∃ > <

Example: Case-study Closed MCP-Mod at $\alpha = 0.025$

- control and k = 3 dose groups (d = (0, 2, 3, 4));
- sample size N = 140 (35 patients per arm);
- \$\mathcal{M}\$ = {emax, exponential, linear, quadratic}.
 - Responses Model Predictions

Contrast	t-value (T_m)	adj. <i>P</i> -value		
exponential	2.790	0.006		
linear	2.541	0.011		
emax	1.627	0.089		
quadratic	1.501	0.111		

PoC can be established (*H*_{{1,2,3}} is rejected).

Koenig (IMS)

Example: Case-study Closed MCP-Mod

• H_3 can also be rejected.

э

Proposed approach: Remarks

- What if the pre-specified contrasts for some models become very similar for a particular intersection hypothesis *H*_J?
 - This may e.g. be relevant when the number of doses for some J is small
- Would it not be better to reduce the number of candidate models a-priori for this particular hypothesis to decrease the penalty for multiplicity?
- High similarity between candidate models will result in high correlations, resulting in little multiplicity adjustment, since correlations are accounted for when calculating critical values, p-values, ...
- Question: For each (intersection) hypothesis *m* contrast tests have to be performed. Is it worth all the effort?

-

イロト 不得 トイヨト イヨト

Simulation study

- Parallel group design with k = 4 dose groups and placebo, d_0, d_1, \ldots, d_k
- Normal responses with variance $\sigma^2 = 1$.
- Testing one sided hypotheses at overall level $\alpha = 0.025$
- Sample size per group *n* = 20
- Two sets of candidate models \mathcal{M} :

- Compare power closed MCP-Mod with step-down Dunnett test
- 10 000 simulation runs for each parameter configuration

< 6 k

Linear with $\mu_4 = 0.4\sigma$; 2 candidate models

3 > 4 3

Linear with $\mu_4 = 0.4\sigma$; 2 candidate models

2

3 > 4 3

Linear with $\mu_4 = 0.6\sigma$; 2 candidate models

2

4 3 > 4 3

Linear with $\mu_4 = 0.8\sigma$; 2 candidate models

æ

4 3 > 4 3

Linear with $\mu_4 = \sigma$; 2 candidate models

æ

4 3 > 4 3

Impact of using more candidates? 4 candidate models

Koenig (IMS)

э

4 3 > 4 3

True Model exponential with $\mu_4 = \sigma$; 2 candidate models

э

3 > 4 3

True Model exponential with $\mu_4 = \sigma$; 4 candidate models

э

4 3 > 4 3

Fixed			
' Sampla	D4	••••••	
Sample	20		
Design	05		Analysia
- 3	D2		Anaiysis
	02		(Testing & Estimation)
	D1		(resuring & Estimation)
	D0		

◆□ > ◆圖 > ◆臣 > ◆臣 > □臣

Adaptive ' Design	D4					
	00					
	D 2					
	DΖ					
	D1					
	D0					
	-					
		Stage 1	l/	4	Stage 2	

◆□ > ◆圖 > ◆臣 > ◆臣 > □臣

- Before trial start:
 - ► Fix the design of the first stage (sample sizes, dose groups, ...) and a candidate model set M₁ for the first stage.
- At interim:
 - Fix the design of the second stage (adapt sample sizes, selection of doses, ...) and a candidate model set M₂ (drop/add models, refine parameter guesses, ...).
 - Use the Mod part of MCP-Mod to support interim decisions (e.g., estimate MED or the peak dose)
- Final analysis:
 - ► Test for a dose response signal and/or individual H_i : µ_i ≤ µ₀ using data from both stages with stage-wise tests based on M₁ and M₂

Testing efficacy of selected doses

(BAUER AND KIESER 1999, HOMMEL 2001, POSCH ET AL. 2005, BRETZ ET AL. 2009, ...)

Final test procedure combines three different methodologies:

- MCP part of MCP-Mod (above)
- Closed test procedure (above)
- Adaptive combination tests (below) that do not require pre-specified adaptation rules

More specifically, use a combination test C(p, q) to combine the stagewise p-values p and q for each intersection hypothesis and apply the closed test procedure, where

- C could be e.g. Fisher's product test or the inverse normal method
- *p* and *q* are calculated from the extended MCP-Mod approach above

くロン 不通 とくほ とくほ とうほう

Adaptive Two Stage Test based on Combination Tests (BAUER 1989, BAUER & KÖHNE 1994, ...)

Planning:

- Fix design (only) for Stage 1
- Fix combination function C(p, q) and critical value ce.g. Inverse-Normal with C(p, q) = $1 - \Phi[w_1 \Phi^{-1}(1-p) + w_2 \Phi^{-1}(1-q)]$

Stage 1:

- Compute p-value p from Stage 1 data
- Fix design for Stage 2 based on data from Stage 1

Stage 2:

- Compute p-value *q* form Stage 2 data.
- Reject H_0 iff $C(p,q) \leq c$.

Remarks

- For each intersection hypothesis H_J, J ⊆ {1, ..., k} calculate multiplicity adjusted p-values per stage using the set of models M₁ and M₂ for stage 1 and 2, respectively.
- Combine the stage-wise minimum p-values via combination test.
- For stage 2: If for H_J, J ⊆ {1,...,k} doses i ∈ J are missing at the second stage, simply take the second stage p-value of the largest subset I ⊂ J, where all doses i ∈ I are available at stage 2.

イロト イポト イラト イラト

Example: Case-study Adaptive MCP-Mod

Design Considerations

- control and k = 3 dose groups (d = (0, 2, 3, 4));
- multiple level $\alpha = 0.025$ (one-sided);
- 1 adaptive interim analysis with O'Brien Fleming type boundaries (α₁ = 0.0043, α₀ = 0.5, c = 0.0235)

Inverse Normal

 $C(p,q) = 1 - \Phi[w_1 \Phi^{-1}(1-p) + w_2 \Phi^{-1}(1-q)]$, where $w_1^2 = n_1/(n_1 + n_2)$, $w_2^2 = n_2/(n_1 + n_2)$ and n_i is proportional to pre-planned stagewise *i* sample sizes;

- Stage 1 sample size $n_1 = 80$ (20 patients per arm);
- Stage 2 sample size n₂ = 60
- $\mathcal{M}_1 = \{\text{emax}, \text{exponential}, \text{linear}, \text{quadratic}\}.$

Example: Adaptive MCP-Mod (3 doses and control)

- Stage I sample size n₁ = 80 (20 patients per arm)
- Interim analysis (Stage I data)

O'Brien Fleming stopping boundaries $\alpha_1 = 0.0043$, $\alpha_0 = 0.5$.

Contrast	t-value (T_m)	adj. <i>P</i> -value
exponential	1.758	0.070
linear	1.420	0.129
emax	0.643	0.370
quadratic	0.479	0.435

Interim Decisions

- control and k = 2 dose groups (d = (0, 3, 4));
- ► Stage II sample size reallocated n₂ = 60 (20 patients per arm);
- $\mathcal{M}_2 = \{\text{exponential}, \text{linear}\}.$

Example: Adaptive MCP-Mod

• Stage II data

o Responses ----- Model Predictions

Contrast	t-value (T_m)	adj. <i>P</i> -value	
exponential	3.635	0.0004	
linear	3.412	0.001	

• Final analysis for PoC

- ▶ p = 0.070;
- ▶ *q* = 0.0004;
- $C(0.070, 0.0004) = 0.0005 < 0.0235 \Rightarrow H_{\{1,2,3\}}$ is rejected.

-

Example: Adaptive MCP-Mod based on Closed Test

• Final analysis

 In addition to PoC, also comparison of hightest dose vs placebo is statistically significant (H₃ is rejected).

< ロ > < 同 > < 回 > < 回 >

Simulation study

- Parallel group design with k = 4 doses and placebo
- Total sample of N = 100 for the entire trial, split between the two stages with 60 in the first and 40 for the second stage
- Set of candidate models \mathcal{M}_1 :

 Compare adaptive MCP-Mod with an adaptive combination test using Dunnett adjusted p-values and the inverse normal combination function

4 3 5 4 3

Simulation study: Interim selection rule

- At interim, select placebo d_0 and the "best" dose for the second stage
- Since the total sample size is fixed, we have an implicit sample reassessment as well
- In the final analysis, we are interested in testing H_i only for the selected dose i, but using totality of information from both stages and strongly controlling the overall Type I error rate

Adaptive MCP-Mod

 Use "best" model to select the dose with the largest response, which may not be the dose with the largest interim estimate

Adaptive design using Dunnett adjusted p-values

• Select the dose with largest interim estimate.

True linear model with $\mu_4 = 0.4\sigma$, 2 candidate models in \mathcal{M}_1

True linear model with $\mu_4 = \sigma$, 2 candidate models in \mathcal{M}_1

4 3 > 4 3

True exponential model with $\mu_4 = \sigma$, 2 candidate models in \mathcal{M}_1

True quadratic model with peak at d_3 and $\mu_3 = \sigma$, 2 candidate models in \mathcal{M}_1

Cambridge 2015 26 / 28

< A >

-

True quadratic model with peak at d_3 and $\mu_3 = \sigma$, 3 candidate models in \mathcal{M}_1

< A

-

Summary

- Applying the closed test procedure to the original MCP-Mod approach, we obtain pairwise dose-control comparisons almost free of charge
- Unconstrained and constrained MCPMod versions available to ensure type I error control (not shown today)
- Using combination test principle enables adaptive interim analysis to change models, sample sizes, doses, ...
- "Optimal" design depends on which power is of main interest (PoC, RAO, specific dose, ...)
- More work to do: more advanced interim selection rules, sample size reassessment based on conditional power arguments, ...

A (10) A (10) A (10) A

References

- P. Bauer, F. Bretz, V. Dragalin, F. König, and G. Wassmer. Twenty-five years of confirmatory adaptive designs: opportunities and pitfalls. Statistics in Medicine - Early View (2015) http://dx.doi.org/10.1002/sim.6472 (Free Download)
- Bauer, P. and Kieser, M. (1999). Combining different phases in the development of medical treatments within a single trial. Statistics in Medicine, 18:1833-1848.
- Bornkamp B, Pinheiro J, Bretz F (2014). R-Package "DoseFinding"
- Bretz F, König F, Brannath W, Glimm E, Posch M (2009). Adaptive Designs for Confirmatory Clinical Trials. Statistics In Medicine 2009 Apr 15;28(8):1181-217.
- Bretz, F., Pinheiro, J.C., and Branson, M. (2005) Combining multiple comparisons and modeling techniques in dose-response studies. Biometrics, 61(3), 738-748.
- CHMP (2014) Qualification opinion of MCP-Mod as an efficient statistical methodology for model-based design and analysis of Phase II dose finding studies under model uncertainty. EMA/CHMP/SAWP/757052/2013, available at www.ema.europa.eu
- Hommel, G. (2001). Adaptive modidcations of hypotheses after an interim analysis. Biometrical Journal, 43(5):581-589.
- König F, Bornkamp B, Bretz F, Glimm E (2014). Confirmatory testing for a beneficial treatment effect in dose-response studies using MCP-Mod. Presentation ISCB 2014, Vienna, Austria.
- Krasnozhon S, Graf A, Bornkamp B, Bretz F, Wassmer G, König F (2014). Adaptive designs for confirmatory model based decisions using MCP-Mod. Presentation ISCB 2014, Vienna, Austria.
- Marcus R, Peritz E, Gabriel KR (1976). On closed testing procedure with special reference to ordered analysis of variance. Biometrika 1976; 63:655-660.
- Pinheiro, J., Bornkamp, B., Glimm, E., and Bretz, F. (2014) Model-based dose finding under model uncertainty using general parametric models. Statistics in Medicine 33:1646-1661.

э.

イロト 不得 トイヨト イヨト

Type I error control using proposed MCP-Mod

- For $\mu_0 = \mu_1 = ... = \mu_k$ everything is fine
- (or if you use two-sided instead of one-sided tests)
- If in reality μ_i ≤ μ₀ holds for some i > 0, a misspecification of the profile (with some negative weights c_i for i > 0) might lead to situations where this test rejects with probability > α
- For strong control of the Type I error rate you have to either
 - assume $\mu_i \ge \mu_0$ for all i > 0, or
 - test only 2 doses against control (proof not shown here), or
 - ► allow only candidates models and/or doses (*i* > 0) with *c_{mi}* ≥ 0 (very restrictive: might exclude to many model and doses), or
 - impose constraint c_{mi} ≥ 0 for i > 0 when determining optimal contrasts for any candidate model m (only for placebo we allow c_{m0} < 0)</p>

くロン 不通 とくほ とくほ とうほう

Constrained MCP-Mod

 ■ Replace original, "unconstrained" optimal contrast coefficients by constrained coefficients satisfying c_{mi} ≥ 0 for all i = 1,..., k

Unconstrained MCP-Mod

Dose	linear	emax1	emax2	sigEmax	quadratic
0	-0.536	-0.861	-0.770	-0.515	-0.709
0.15	-0.341	0.199	-0.102	-0.453	-0.078
0.5	0.114	0.317	0.343	0.310	0.694
1	0.764	0.345	0.529	0.658	0.093

Constrained MCP-Mod

Dose	linear	emax1	emax2	sigEmax	quadratic
0	-0.707	-0.861	-0.809	-0.782	-0.738
0.15	0.000	0.199	0.000	0.000	0.000
0.5	0.000	0.317	0.311	0.187	0.671
1	0.707	0.345	0.498	0.595	0.067

E N 4 E N

Simulation study

- Parallel group design with placebo and k = 3 doses 0.15, 0.5, 1
- Normal responses with variance $\sigma^2 = 1$.
- Testing one-sided hypotheses at overall level $\alpha = 0.025$.
- Sample size per group n = 30
- Candidate models M: Linear, 2 Emax ($ED_{50} = 0.025, 0.2$), sigmoid Emax ($ED_{50} = 0.4, h = 3$), and quadratic (maximum effect at dose 0.6)
- Compare power of unconstrained with constrained MCP-Mod
 - Further comparisons with step-down Dunnett and fixed sequence test shown in the Appendix.

- Difference in power of unconstrained and constrained MCP-Mod to reject individual hypotheses *H_i*, under different true models
 - No apparent loss in power when using constrained MCP-Mod
 - However, constrained MCP-Mod is less powerful for dose response signal detection (not shown)

28/28

Koenig (IMS)