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Introduction
Traditionally two main analysis strategies for phase II trials: multiple
comparisons (MCP) of contrasts between doses and modeling of dose
response (DR)

Bretz et al. (2005) proposed an unified approach combining the
advantages of MCP and modeling - MCPMod:

I Set of candidate models to account for model uncertainty
I Test PoC using MCP with optimal model contrasts
I Select a model and estimate target doses (e.g., MED, ED50, ...)
I Qualification Opinion adopted by CHMP (2014)

Our goal today:
Use framework of MCPMod to

allow testing of individual dose-control comparisons

allow design modifications at an adaptive interim analysis

increase the power of declaring effective doses statistically significant
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Overview of MCP-Mod
(BRETZ ET AL. 2005, BORNKAMP ET AL. 2009, PINHEIRO ET AL. 2014, . . . )
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Statistical model

Assume that a response Y is observed for k + 1 parallel groups
corresponding to doses d0,d1,..., dk (d0 typically placebo)
Assume that the Yij for subject j in group i is modeled as

Yij = f (di , θ) + εij , εij
ind∼ N (0, σ2), i = 0, . . . , k , j = 1, . . . ,ni ,

Denote the true (unknown) effect at dose i with µi = f (di , θ)

MCP-Mod uses classical contrast tests, with multiplicity
adjustment, to detect evidence in favor of a dose response signal

I based on a pre-specified setM of M parameterized candidate
models with corresponding model functions fm(d ,θm), m = 1, . . . ,M
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Candidate model set
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Use prior guesses to determine the parameters of the
standardized models θ0

m determining the model shapes
Optimal contrasts cm = (cm0, cm1, . . . , cmk )′ depends on best
guesses for standardized model.
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Contrast test for dose response signal detection (PoC)

Single contrast test for detecting the mth model shape:

Tm =

∑k
i=0 cmi Ȳi

S
√∑k

i=0 c2
mi/ni

, m = 1, . . . ,M,

Test statistics are jointly multivariate-t distributed with correlations
determined by the model contrasts
Multiplicity adjusted critical value q or adjusted p-values pm for
individual tests of models derived from multivariate t-distribution
accounting for the different models
Dose response signal established if the maximum test statistic
maxm Tm > q or the minimum adjusted p-value minm pm < α
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Efficacy claims for individual doses using MCP-Mod

Original MCP-Mod approach is designed for Phase II studies and
enables only the detection of a dose response signal at the MCP step

Often, efficacy claims for individual doses are of interest in Phase III

Formally interested in testing the k elementary null hypotheses

Hi : µi ≤ µ0, versus Ai : µi > µ0, i = 1, ..., k

but within the framework of MCP-Mod

Combine two different methodological concepts

MCP-Mod contrast test and closed testing principle

For k hypotheses H1, . . . ,Hk :

Specify a level α test for all HJ =
⋂

i∈J Hi , J ⊆ {1, . . . , k}, and

Reject Hi if and only if all HJ with i ∈ J are rejected
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Proposed approach: Details

Take the original contrast test from MCP-Mod as the level α test
for the global intersection hypothesis

H1 ∩ H2... ∩ Hk : µ1, ..., µk ≤ µ0

Use the same strategy for all other intersections hypotheses

Our proposal for a level α test for HJ = ∩i∈JHi , J ⊆ {1, . . . , k}
Test HJ with MCP-Mod contrast tests using doses i ∈ J only.
Use the same set of pre-specified setM of candidates models for
each intersection hypothesis HJ , but
But calculate new optimal contrasts for each HJ and model using
only doses i ∈ J
This means for each intersection hypothesis we have to perform
as many contrast tests as models are included inM.
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Proposed approach: Illustration of details

Consider an example with 4 doses and placebo

Assume 6 candidate models, with corresponding optimal coefficients
for testing H1 ∩ H2 ∩ H3 ∩ H4 : µ1, µ2, µ3, µ4 ≤ µ0
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Proposed approach: Illustration of details

Consider an example with 4 doses and placebo

Assume 6 candidate models, with corresponding optimal coefficients
for festing H4 : µ4 ≤ µ0
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For the test of an elementary null hypothesis this results in the same contrast
for all models. This gives a t-test at full level α.
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Example: Case-study Closed MCP-Mod at α = 0.025
control and k = 3 dose groups (d = (0, 2, 3, 4));

sample size N = 140 (35 patients per arm);

M = {emax,exponential,linear,quadratic}.
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Contrast t-value (Tm) adj. P-value
exponential 2.790 0.006

linear 2.541 0.011
emax 1.627 0.089

quadratic 1.501 0.111

PoC can be established (H{1,2,3} is rejected).
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Example: Case-study Closed MCP-Mod
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I H3 can also be rejected.
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Proposed approach: Remarks

What if the pre-specified contrasts for some models become very
similar for a particular intersection hypothesis HJ?

I This may e.g. be relevant when the number of doses for some J is
small

Would it not be better to reduce the number of candidate models
a-priori for this particular hypothesis to decrease the penalty for
multiplicity?
High similarity between candidate models will result in high
correlations, resulting in little multiplicity adjustment, since
correlations are accounted for when calculating critical values,
p-values, ...

Question: For each (intersection) hypothesis m contrast tests have
to be performed. Is it worth all the effort?

Koenig (IMS) Cambridge 2015 13 / 28



Simulation study

Parallel group design with k = 4 dose groups and placebo, d0,d1, . . . ,dk

Normal responses with variance σ2 = 1.

Testing one sided hypotheses at overall level α = 0.025

Sample size per group n = 20

Two sets of candidate modelsM:
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Compare power closed MCP-Mod with step-down Dunnett test

10 000 simulation runs for each parameter configuration
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Simulations
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. D4
Fixed

D4
D3
D2
D1

Sample
Design Analysis 

(Testing & Estimation)D1
D0

(Testing & Estimation)

Before trial start:
I Fix the design of the first stage (sample sizes, dose groups, ...) and

a candidate model setM1 for the first stage.
At interim:

I Fix the design of the second stage (adapt sample sizes, selection
of doses, ...) and a candidate model setM2 (drop/add models,
refine parameter guesses, ...).

I Use the Mod part of MCP-Mod to support interim decisions (e.g.,
estimate MED or the peak dose)

Final analysis:
I Test for a dose response signal and/or individual Hi : µi ≤ µ0 using

data from both stages with stage-wise tests based onM1 andM2
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Testing efficacy of selected doses
(BAUER AND KIESER 1999, HOMMEL 2001, POSCH ET AL. 2005, BRETZ ET

AL. 2009, ... )

Final test procedure combines three different methodologies:

MCP part of MCP-Mod (above)

Closed test procedure (above)

Adaptive combination tests (below) that do not require pre-specified
adaptation rules

More specifically, use a combination test C(p,q) to combine the stagewise
p-values p and q for each intersection hypothesis and apply the closed test
procedure, where

C could be e.g. Fisher´s product test or the inverse normal method

p and q are calculated from the extended MCP-Mod approach above
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Adaptive Two Stage Test based on Combination Tests
(BAUER 1989, BAUER & KÖHNE 1994, . . . )

p

�1
�

�

Reject H0 Accept H0

0 1

Second Stage

C( , )p q

Reject H0
Accept H0

0 1
c

First Stage

Adaptation

Planning:

Fix design (only) for Stage 1

Fix combination function
C(p, q) and critical value c
e.g. Inverse-Normal with C(p, q) =

1−Φ[w1Φ−1(1−p) + w2Φ−1(1−q)]

Stage 1:

Compute p-value p from
Stage 1 data

Fix design for Stage 2 based
on data from Stage 1

Stage 2:

Compute p-value q form
Stage 2 data.

Reject H0 iff C(p, q) ≤ c.
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Remarks

For each intersection hypothesis HJ , J ⊆ {1, ..., k} calculate
multiplicity adjusted p-values per stage using the set of models
M1 andM2 for stage 1 and 2, respectively.

Combine the stage-wise minimum p-values via combination test.

For stage 2: If for HJ , J ⊆ {1, ..., k} doses i ∈ J are missing at the
second stage, simply take the second stage p-value of the largest
subset I ⊂ J, where all doses i ∈ I are available at stage 2.
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Example: Case-study Adaptive MCP-Mod

Design Considerations
control and k = 3 dose groups (d = (0, 2, 3, 4));

multiple level α = 0.025 (one-sided);

1 adaptive interim analysis with O’Brien Fleming type boundaries
(α1 = 0.0043, α0 = 0.5, c = 0.0235)

Inverse Normal
C(p, q) = 1− Φ[w1Φ−1(1− p) + w2Φ−1(1− q)], where w2

1 = n1/(n1 + n2),
w2

2 = n2/(n1 + n2) and ni is proportional to pre-planned stagewise i sample
sizes;

Stage 1 sample size n1 = 80 (20 patients per arm);

Stage 2 sample size n2 = 60

M1 = {emax,exponential,linear,quadratic}.
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Example: Adaptive MCP-Mod (3 doses and control)
Stage I sample size n1 = 80 (20 patients per arm)

Interim analysis (Stage I data)

Dose

R
es

po
ns

e

−2

−1

0

1

2

3

0 1 2 3 4

Responses Model Predictions

O’Brien Fleming stopping boundaries

α1 = 0.0043, α0 = 0.5.

Contrast t-value (Tm) adj. P-value
exponential 1.758 0.070

linear 1.420 0.129
emax 0.643 0.370

quadratic 0.479 0.435

Interim Decisions
I control and k = 2 dose groups (d = (0, 3, 4));
I Stage II sample size reallocated n2 = 60 (20 patients per arm);
I M2 = {exponential,linear}.
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Example: Adaptive MCP-Mod

Stage II data

Dose
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Responses Model Predictions

Contrast t-value (Tm) adj. P-value
exponential 3.635 0.0004

linear 3.412 0.001

Final analysis for PoC
I p = 0.070;
I q = 0.0004;
I C(0.070,0.0004) = 0.0005 < 0.0235⇒ H{1,2,3} is rejected.
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Example: Adaptive MCP-Mod based on Closed Test

Final analysis
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I In addition to PoC, also comparison of hightest dose vs placebo is
statistically significant (H3 is rejected).
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Simulation study

Parallel group design with k = 4 doses and placebo

Total sample of N = 100 for the entire trial, split between the two stages
with 60 in the first and 40 for the second stage

Set of candidate modelsM1:
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Simulation study: Interim selection rule

At interim, select placebo d0 and the “best” dose for the second stage

Since the total sample size is fixed, we have an implicit sample
reassessment as well

In the final analysis, we are interested in testing Hi only for the selected
dose i , but using totality of information from both stages and strongly
controlling the overall Type I error rate

Adaptive MCP-Mod

Use “best” model to select the dose with the largest response, which
may not be the dose with the largest interim estimate

Adaptive design using Dunnett adjusted p-values

Select the dose with largest interim estimate.
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Simulation results
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Summary

Applying the closed test procedure to the original MCP-Mod
approach, we obtain pairwise dose-control comparisons almost
free of charge
Unconstrained and constrained MCPMod versions available to
ensure type I error control (not shown today)
Using combination test principle enables adaptive interim analysis
to change models, sample sizes, doses, ...

“Optimal” design depends on which power is of main interest
(PoC, RAO, specific dose, ... )
More work to do: more advanced interim selection rules, sample
size reassessment based on conditional power arguments, ...

Koenig (IMS) Cambridge 2015 27 / 28



References
P. Bauer, F. Bretz, V. Dragalin, F. König, and G. Wassmer.
Twenty-five years of confirmatory adaptive designs: opportunities and pitfalls.
Statistics in Medicine - Early View (2015)
http://dx.doi.org/10.1002/sim.6472 (Free Download)

Bauer, P. and Kieser, M. (1999). Combining different phases in the development of medical treatments within a single
trial. Statistics in Medicine, 18:1833-1848.

Bornkamp B, Pinheiro J, Bretz F (2014). R-Package “DoseFinding”

Bretz F, König F, Brannath W, Glimm E, Posch M (2009). Adaptive Designs for Confirmatory Clinical Trials. Statistics In
Medicine 2009 Apr 15;28(8):1181-217.

Bretz, F., Pinheiro, J.C., and Branson, M. (2005) Combining multiple comparisons and modeling techniques in
dose-response studies. Biometrics, 61(3), 738-748.

CHMP (2014) Qualification opinion of MCP-Mod as an efficient statistical methodology for model-based design and
analysis of Phase II dose finding studies under model uncertainty. EMA/CHMP/SAWP/757052/2013, available at
www.ema.europa.eu

Hommel, G. (2001). Adaptive modidcations of hypotheses after an interim analysis. Biometrical Journal, 43(5):581-589.

König F, Bornkamp B, Bretz F, Glimm E (2014). Confirmatory testing for a beneficial treatment effect in dose-response
studies using MCP-Mod. Presentation ISCB 2014, Vienna, Austria.

Krasnozhon S, Graf A, Bornkamp B, Bretz F, Wassmer G, König F (2014). Adaptive designs for confirmatory model
based decisions using MCP-Mod. Presentation ISCB 2014, Vienna, Austria.

Marcus R, Peritz E, Gabriel KR (1976). On closed testing procedure with special reference to ordered analysis of
variance. Biometrika 1976; 63:655-660.

Pinheiro, J., Bornkamp, B., Glimm, E., and Bretz, F. (2014) Model-based dose finding under model uncertainty using
general parametric models. Statistics in Medicine 33:1646-1661.

Koenig (IMS) Cambridge 2015 28 / 28



Type I error control using proposed MCP-Mod

For µ0 = µ1 = ... = µk everything is fine
(or if you use two-sided instead of one-sided tests)
If in reality µi ≤ µ0 holds for some i > 0, a misspecification of the
profile (with some negative weights ci for i > 0) might lead to
situations where this test rejects with probability > α

For strong control of the Type I error rate you have to either
I assume µi ≥ µ0 for all i > 0, or

I test only 2 doses against control (proof not shown here), or

I allow only candidates models and/or doses (i > 0) with cmi ≥ 0
(very restrictive: might exclude to many model and doses), or

I impose constraint cmi ≥ 0 for i > 0 when determining optimal
contrasts for any candidate model m (only for placebo we allow
cm0 < 0)
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Constrained MCP-Mod

Replace original, “unconstrained” optimal contrast coefficients by
constrained coefficients satisfying cmi ≥ 0 for all i = 1, . . . , k

Unconstrained MCP-Mod
Dose linear emax1 emax2 sigEmax quadratic
0 -0.536 -0.861 -0.770 -0.515 -0.709
0.15 -0.341 0.199 -0.102 -0.453 -0.078
0.5 0.114 0.317 0.343 0.310 0.694
1 0.764 0.345 0.529 0.658 0.093

Constrained MCP-Mod
Dose linear emax1 emax2 sigEmax quadratic
0 -0.707 -0.861 -0.809 -0.782 -0.738
0.15 0.000 0.199 0.000 0.000 0.000
0.5 0.000 0.317 0.311 0.187 0.671
1 0.707 0.345 0.498 0.595 0.067
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Simulation study

Parallel group design with placebo and k = 3 doses 0.15,0.5,1

Normal responses with variance σ2 = 1.

Testing one-sided hypotheses at overall level α = 0.025.

Sample size per group n = 30

Candidate modelsM: Linear, 2 Emax (ED50 = 0.025,0.2), sigmoid
Emax (ED50 = 0.4,h = 3), and quadratic (maximum effect at dose 0.6)

Compare power of unconstrained with constrained MCP-Mod

I Further comparisons with step-down Dunnett and fixed sequence
test shown in the Appendix.
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Simulation results
Difference in power of unconstrained and constrained MCP-Mod
to reject individual hypotheses Hi , under different true models

I No apparent loss in power when using constrained MCP-Mod
I However, constrained MCP-Mod is less powerful for dose response

signal detection (not shown)
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