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“Modern”multiple testing procedures

Recently many multiple testing procedures that address
specific multiplicity issues in clinical trials have been proposed.

Reflect the contextual relationships between hypotheses in the
inference procedure (e.g. test secondary hypotheses only if
primary hypotheses are rejected)

Examples are Fixed Sequence Test, Fallback Test,
Gatekeeping Tests, ...

Especially graph-based multiple testing procedures:

can be easily tailored to the problem at hand,
make the guiding principle behind the procedures more
transparent,
help to communicate the procedures to clinicians and
regulators.

[Bretz, Maurer, Brannath, Posch (2009)]
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Multiple testing in adaptive designs

Methods for a limited number of standard situations:

treatment selection
multiple (co-primary) endpoints
subgroup selection

(Bauer & Kieser 1999; Hommel 2001; Posch et al. (2005); ...)

Reflect only very simple relations/hierarchies between
hypotheses

Difficult or impossible to tailor to more general multiple
testing problems

Closed test of adaptive combination tests does not allow to
use the preplanned test if no adaptations are performed
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Multiplicity in adaptive clinical trials

Review of scientific advice letters [Elsäßer et al. (2014)]

Review 59 scientific advise requests concerning adaptive trials.
They identify that a large proportion concerns multiple testing
issues and state: “However, even though a huge range of statistical
methodology to avoid type I error inflation in adaptive clinical trials
has been developed over the years, type I error control in adaptive
clinical trials surprisingly is still a frequent major concern raised in
the SA letters.”
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Multiplicity control in adaptive designs

Multiple testing procedures for adaptive designs that reflect
the contextual relations between hypotheses start to be
addressed only very recently.

Adaptive design for primary and secondary hypotheses
[Tamhane et al. (2012)]

Graph based partitioning algorithm that applies the graphical
approach to adaptive combination tests [Sugitani et al.

(2013)].
Adaptive graph-based multiple testing procedures based on the
partial conditional error rate approach [Klinglmueller et

al. (2014)]
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Adaptive graph-based multiple testing procedures

A general framework to

1 address multiplicity in complex clinical trials

2 reflect the relative importances, contextual relations, logical
restrictions of clinical hypotheses

3 permit adaptive interim analysis, i.e., trial modifications
based on unblinded trial data or external information

Strict FWE control if adaptations are performed:

To deal with multiplicity: Apply graphical approach [(Bretz,

Maurer, Brannath, Posch ’09)]

To account for adaptivity: Use partial conditional errors
[(Posch, Futschik ’08),(Posch, Maurer, Bretz

’10)]
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Example: Multiple treatment arms, multiple endpoints

Late phase development of a new drug

Two treatments, T 1,T 2, e.g., high dose, low dose, are
compared to placebo.

Two endpoints, one primary and one secondary.

There are 4 hypotheses to be tested

Desired properties for multiple test:

1 Family wise error control (α = .025 one sided)

2 Assuming equal effect sizes both treatments have equal
chances of a positive result.

3 Test secondary hypothesis only if the corresponding primary
hypothesis is rejected.

4 Reject as many hypotheses as possible.
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Example: Graphical approach
Tailoring the method [Bretz ’09]

Two doses, two endpoints, α = .025

H1

T 1

H2

T 2

H3

PrimaryPrimaryPrimary

H4Secondary

2. Split α using equal weights between doses
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Example: Graphical approach
Tailoring the method [Bretz ’09]

Two doses, two endpoints, α = .025

H1
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H2

0.5α
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0
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H4

0
Secondary

3. Initially give zero weight to secondary hypotheses
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Example: Graphical approach
Tailoring the method [Bretz ’09]

Two doses, two endpoints, α = .025
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0
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1 1

4. If rejected, reallocate weight from primary to secondary
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Example: Graphical approach
Tailoring the method [Bretz ’09]

Two doses, two endpoints, α = .025
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T 1
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0.5α

T 2

H3
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PrimaryPrimaryPrimary

H4

0
Secondary
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11

4. If both endpoints of a dose are rejected reallocate weight
to other dose
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Example: Graphical approach
Performing the test [Bretz ’09]

Two doses, two endpoints, α = .025

H1

0.5α

T 1

H2

0.5α

T 2

H3

0

PrimaryPrimaryPrimary

H4

0
Secondary

1 1

11

A numeric example:
p1 = .012, p2 = .024, p3 = .009, p4 = .2

Example: Reject H1 as p1 < 0.5α. Update graph by removing
H1
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Graphical approach to multiple testing procedures

The graphical approach presents an intuitive way to construct
and communicate multiple testing procedures that, reflect the
relative importances, contextual relations, or logical
restrictions between hypotheses.

It provides strict control of the family wise error rate (FWER)

The graph defines a closed testing procedure of weighted
Bonferroni tests.

The sequential rejection principle provides a shortcut to the
closed test.

[Bretz et al. ’09,’11]
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Behind the Scenes:
The graph based procedure is a shortcut for a closed tests

The Closure Principle

For J ⊆ {1, . . . ,m} let HJ =
⋂

i∈J Hi .

For each HJ define a level α test.

Reject Hi if all HJ for which i ∈ J can be rejected at level α

The closed testing procedure controls the FWE at α in the
strong sense.

Requires 2m − 1 tests!

The graph and algorithm implicitly define

weighted Bonferroni tests for all intersection hypotheses
a shortcut that reduces the number of tests: in each step, a
large number of intersection hypotheses are tested implicitly.
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Closure of weighted tests

Intersection H0 Fixed Sample
H1 ∩ H2 ∩ H3 ∩ H4 p1 ≤ 0.5α ∨ p2 ≤ 0.5α
H1 ∩ H2 ∩ H3 p1 ≤ 0.5α ∨ p2 ≤ 0.5α
H1 ∩ H2 ∩ H4 p1 ≤ 0.5α ∨ p2 ≤ 0.5α
H1 ∩ H3 ∩ H4 p1 ≤ 0.5α ∨ p4 ≤ 0.5α
H2 ∩ H3 ∩ H4 p2 ≤ 0.5α ∨ p3 ≤ 0.5α
H1 ∩ H2 p1 ≤ 0.5α ∨ p2 ≤ 0.5α
H1 ∩ H3 p1 ≤ α
H1 ∩ H4 p1 ≤ 0.5α ∨ p4 ≤ 0.5α
H2 ∩ H3 p2 ≤ 0.5α ∨ p3 ≤ 0.5α
H2 ∩ H4 p2 ≤ α
H3 ∩ H4 p3 ≤ 0.5α ∨ p4 ≤ 0.5α
H1 p1 ≤ α
H2 p2 ≤ α
H3 p3 ≤ α
H4 p4 ≤ α

24 − 1 = 15 Intersection hypotheses!
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Adaptive Designs with Selection of Hypotheses.

H
3

H
2

H
4

H
1

First Stage      Selection     Second Stage

Start with a graph specifying the multiple testing procedure
for all m hypotheses.

In an interim analysis some hypotheses are dropped.

Only for the continued hypotheses further observations are
collected.

The data of both stages is used in the final test.

Control of the FWE in the strong sense.

Applications: Treatment or subgroup selection in clinical trials, ...
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Dropping of a treatment at interim

Assume that midway throughout the trial (e.g., following safety
concerns) the trial data is unblinded and the decision is made to
stop sampling for T 2.

H1

0.5α

T 1

H2

0.5α

T 2

H3

0

P

H4

0

S

1 1

11
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Dropping of a treatment at interim

Assume that midway throughout the trial (e.g., following safety
concerns) the trial data is unblinded and the decision is made to
stop sampling for T 2.

A simple strategy

Having dropped T 2 simply accept H2

and H4, discard reserved α/2

Test H1 and H3 using a fixed-sequence
test at level α/2

Conservative - cannot use α/2
foreseen for higher dose

Does not allow further adaptations
(e.g. sample size reassessment)

Can we do better?

H1

0.5α

T 1

H2

T 2

H3

0

P

H4
S

1
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Dropping of a treatment at interim

Assume that midway throughout the trial (e.g., following safety
concerns) the trial data is unblinded and the decision is made to
stop sampling for T 2.

Desired strategy

Use 1st-stage data from T 2.

Optionally re-allocate samples from
dropped treatment arm to T 1 and
control.

Use an updated graph to define new
test procedure!

H1

?

T 1

H2

T 2

H3

?

P

H4
S

1
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Weighted closed test

Intersection H0 Fixed Sample Simple strategy Adaptive
H1 ∩ H2 ∩ H3 ∩ H4 p1 ≤ 0.5α ∨ p2 ≤ 0.5α p1 ≤ 0.5α ?
H1 ∩ H2 ∩ H3 p1 ≤ 0.5α ∨ p2 ≤ 0.5α p1 ≤ 0.5α ?
H1 ∩ H2 ∩ H4 p1 ≤ 0.5α ∨ p2 ≤ 0.5α p1 ≤ 0.5α ?
H1 ∩ H3 ∩ H4 p1 ≤ 0.5α ∨ p4 ≤ 0.5α p1 ≤ 0.5α ?
H2 ∩ H3 ∩ H4 p2 ≤ 0.5α ∨ p3 ≤ 0.5α p3 ≤ 0.5α ?
H1 ∩ H2 p1 ≤ 0.5α ∨ p2 ≤ 0.5α p1 ≤ 0.5α ?
H1 ∩ H3 p1 ≤ α p1 ≤ α ?
H1 ∩ H4 p1 ≤ 0.5α ∨ p4 ≤ 0.5α p1 ≤ 0.5α ?
H2 ∩ H3 p2 ≤ 0.5α ∨ p3 ≤ 0.5α p3 ≤ 0.5α ?
H2 ∩ H4 p2 ≤ α ?
H3 ∩ H4 p3 ≤ 0.5α ∨ p4 ≤ 0.5α p3 ≤ 0.5α ?
H1 p1 ≤ α p1 ≤ α ?
H2 p2 ≤ α ?
H3 p3 ≤ α p3 ≤ α ?
H4 p4 ≤ α ?

Can we use the first stage data from the dropped treatment when
testing corresponding intersections?
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Solutions for H0 = H1 ∩ H2 ∩ H3 ∩ H4

Intersection H0 Fixed Sample Simple strategy Adaptive
H1 ∩ H2 ∩ H3 ∩ H4 p1 ≤ 0.5α ∨ p2 ≤ 0.5α p1 ≤ 0.5α ?

Conditional error [Müller, Schäfer, ’04]

Second stage test, i.e., using only independent second stage
observations, at conditional level

A1234 = EH0

[
1{p1≤0.5α∨p2≤0.5α}

∣∣∣First Stage Data
]
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Caveat!

For multiple hypotheses one would need to know the
joint conditional distribution of second stage
statistics, which in general is unknown, e.g., multiple
endpoints. Parametric solutions exist, e.g., for
many-to-one comparisons [Koenig et al. ’08]
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Second stage test, i.e., using only independent second stage
observations, at conditional level

A1234 = EH0

[
1{p1≤0.5α∨p2≤0.5α}

∣∣∣First Stage Data
]

15 / 24



Solutions for H0 = H1 ∩ H2 ∩ H3 ∩ H4

Intersection H0 Fixed Sample Simple strategy Adaptive
H1 ∩ H2 ∩ H3 ∩ H4 p1 ≤ 0.5α ∨ p2 ≤ 0.5α p1 ≤ 0.5α ?

Conditional error [Müller, Schäfer, ’04]
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Partial conditional error [Posch et al. ’08,’10]

Second stage test, i.e., based on independent second stage
observations, at conditional “level”:

B1234 =EH0
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]

+ EH0
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Conditional second stage levels
(X ... First stage data)

Intersection H0 Adaptive

Simple strategy

H1 ∩ H2 ∩ H3 ∩ H4 EH0

[
1{p1≤0.5α}|X

]
+ EH0

[
1{p2≤0.5α}|X

]
EH0

[
1{p1≤0.5α}|X

]
H1 ∩ H2 ∩ H3 EH0

[
1{p1≤0.5α}|X

]
+ EH0

[
1{p2≤0.5α}|X

]
EH0

[
1{p1≤0.5α}|X

]
H1 ∩ H2 ∩ H4 EH0

[
1{p1≤0.5α}|X

]
+ EH0

[
1{p2≤0.5α}|X

]
EH0

[
1{p1≤0.5α}|X

]
H1 ∩ H3 ∩ H4 EH0

[
1{p1≤0.5α}|X

]
+ EH0

[
1{p4≤0.5α}|X

]
EH0

[
1{p1≤0.5α}|X

]
H2 ∩ H3 ∩ H4 EH0

[
1{p2≤0.5α}|X

]
+ EH0

[
1{p3≤0.5α}|X

]
EH0

[
1{p3≤0.5α}|X

]
H1 ∩ H2 EH0

[
1{p1≤0.5α}|X

]
+ EH0

[
1{p2≤0.5α}|X

]
EH0

[
1{p1≤0.5α}|X

]
H1 ∩ H3 EH0

[
1{p1≤α}|X

]
EH0

[
1{p1≤α}|X

]
H1 ∩ H4 EH0

[
1{p1≤0.5α}|X

]
+ EH0

[
1{p4≤0.5α}|X

]
EH0

[
1{p1≤0.5α}|X

]
H2 ∩ H3 EH0

[
1{p2≤0.5α}|X

]
+ EH0

[
1{p3≤0.5α}|X

]
EH0

[
1{p3≤0.5α}|X

]
H2 ∩ H4 EH0

[
1{p2≤α}|X

]
H3 ∩ H4 EH0

[
1{p3≤0.5α}|X

]
+ EH0

[
1{p4≤0.5α}|X

]
EH0

[
1{p3≤0.5α}|X

]
H1 EH0

[
1{p1≤α}|X

]
EH0

[
1{p1≤α}|X

]
H2 EH0

[
1{p2≤α}|X

]
H3 EH0

[
1{p3≤α}|X

]
EH0

[
1{p3≤α}|X

]
H4 EH0

[
1{p4≤α}|X

]
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1{p2≤0.5α}|X

]
≥ EH0

[
1{p1≤0.5α}|X

]
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Adaptive graph-based multiple testing procedures

Define a pre-planned test using the graphical approach

At interim perform adaptations based on internal or external
data, e.g., dropping of treatments, sample size reassessment

Flexibility: No specific selection rule nor the number of
hypotheses to be selected needs to be pre-specified.

Use an updated graph to derive suitable second stage multiple
testing procedure, e.g., remove nodes of dropped treatments

If no adaptation is performed, the pre-planned sequentially
rejective test can be applied (no price has to be paid!)

Use of conditional error principle ensures family wise error rate
control
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Simulation study

Two treatments against control, two endpoints

Common known standard deviation σ = 1

T1 has effect 1
2
δ, T2 (δ)

Equal effect sizes in either endpoint

Sample size n = 80 per treatment arm

After half of the measurements have been collected, the T2 is dropped

Test procedures:

1 Simple: Retain H2, H4, test H1, H3 sequentially at level α
2

2 AD1: Use adaptive test

3 AD2: Use adaptive test, and reallocate the 40 patients that would have
received T2 to T1 and control
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Simulation
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Our approach is suitable for

General graphical procedures

Treatment selection

Subgroup selection

Re-weighting (e.g., change in priorities)

Sample size reassessment

Theoretically interim analyses may be unscheduled
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Extensions

Simultaneous confidence intervals [(Magirr ’12)]

Mixed parametric procedures To conditional error

Fully sequential tests To 2nd -stage levels

GNU R package gMCP
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Discussion & Conclusion

Intuitive way to design complex multiple testing procedures

Covers a large class of multiple testing procedures

The weighted directed graph completely defines the adaptive
multiple testing procedure

Flexibility to perform mid-trial adaptations based on internal
or external information

Adaptations are not restricted to dropping of hypotheses

No assumptions on the joint distribution of test statistics
across hypotheses.

Without adaptation the pre-planned test can be performed

Multiplicity from different sources can be adjusted for

Strong control of the FWER
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