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Estimating the reliability of repeatedly
measured endpoints based on linear
mixed-effects models. A tutorial
Wim Van der Elst,a* Geert Molenberghs,a,b Ralf-Dieter Hilgers,c

Geert Verbeke,a,b and Nicole Heussenc

There are various settings in which researchers are interested in the assessment of the correlation between repeated measure-
ments that are taken within the same subject (i.e., reliability). For example, the same rating scale may be used to assess the
symptom severity of the same patients by multiple physicians, or the same outcome may be measured repeatedly over time in
the same patients.
Reliability can be estimated in various ways, for example, using the classical Pearson correlation or the intra-class correlation in
clustered data. However, contemporary data often have a complex structure that goes well beyond the restrictive assumptions
that are needed with the more conventional methods to estimate reliability.
In the current paper, we propose a general and flexible modeling approach that allows for the derivation of reliability esti-
mates, standard errors, and confidence intervals – appropriately taking hierarchies and covariates in the data into account.
Our methodology is developed for continuous outcomes together with covariates of an arbitrary type.
The methodology is illustrated in a case study, and a Web Appendix is provided which details the computations using the R
package CorrMixed and the SAS software. Copyright © 2016 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Reliability essentially refers to the reproducibility (or, predictabil-
ity) of outcomes that are repeatedly measured within the same
individuals. In particular, this metric quantifies the extent to which
a repetition of a measurement under the same general conditions
leads to the same result.

Conventional methods to estimate reliability. The concept of
reliability is grounded in the so-called classical test theory [1].
In this paradigm, the outcome of a measurement procedure
is modeled as X D � C ", where X is the observed score of a
subject, � is the unobserved (latent) true score of this person,
and " is the measurement error. In classical test theory, it is
assumed (i) that the measurement errors are mutually uncor-
related, and (ii) that the measurement errors are uncorrelated
with the true scores. Under these assumptions, Var.X/ D
Var.�/ C Var."/ and the reliability of the measurement (R) is
defined as

R D
Var.�/

Var.X/
D

Var.�/

Var.�/C Var."/
. (1)

Equation (1) is intuitively appealing because it defines reliabil-
ity as the fraction of the observed test score variance that is
attributable to the true score variance. If a test is perfectly reli-
able, the true score and observed score variances are equal,
and thus R D 1. Unfortunately, reliability cannot be directly
estimated based on Eq. (1) because � cannot be observed.

Instead, reliability will have to be estimated indirectly. A clas-
sical solution to the problem is to introduce the concept of
parallel tests [2]. Parallel tests are tests that have the same true
score for each subject and equal error variances. For example,
suppose that we have two measurements X1 and X2 for the
same subjects that are assessed at two instances of time with
a short lag (such that � does not change), or that are obtained
from two raters at the same point in time. Then X1 D � C "1

and X2 D � C "2 with Var.X1/ D Var.X2/ D Var.X/ and
Var."1/ D Var."2/ D Var."/, that is, X1 and X2 are paral-
lel measurements. The covariance of the two measurements
then equals

Cov .X1, X2/D Cov.� C "1, � C "2/

D Var.�/CCov .� , "1/CCov .� , "2/CCov ."1, "2/

D Var.�/,
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and the correlation between X1 and X2 can be written as

Corr.X1, X2/ D
Cov.X1, X2/p

Var.X1/
p

Var.X2/
D

Var.�/

Var.�/C Var."/
D R.

(2)
Limitations of the conventional methods. Equation (2) provides
a convenient and straightforward way to compute reliabil-
ity, but it is important to stress that the assumption that the
measurements are parallel is crucial. This assumption is often
violated in practice [3]. For example, it seems implausible to
assume that patients in a clinical trial or in medical practice
do not exhibit a systematic change over time as a result of
their treatment. Another limitation of Eq. (2) is that only two
measurements can be considered, and these measurements
should have the same test–retest interval for all subjects.
In practice, data may be available for more than two mea-
surement moments and/or with different test–retest intervals.
Further, the use of Eq. (2) is less-than-ideal when data are
missing, because subjects who have a missing observation for
either X1 or X2 are discarded from the analysis. This approach
does not only lead to a loss of information, but it also ignores
the missing data generating mechanism. Basically, to obtain
unbiased estimates for R using Eq. (2), the assumption that
the data are missing completely at random should be valid.
This means that the missingness should not depend on the
observed or the unobserved outcomes [4,5]. This is a strong
and often unrealistic assumption, for example, in a clinical trial
setting, it is conceivable that subjects who have lower scores
at the first measurement in time (poorer health) are more
likely to drop out of the study at the second measurement in
time (missing value for X2).
Importance of reliability. It is important to carefully consider
the reliability of a measurement procedure, for example in the
context of designing a clinical trial. Obviously, in particular in
explorative or experimental small population group studies,
serial measurements are gathered to understand the nature
of the disease. However, unreliable measurement methods
might lead to serious misinterpretation of the disease pro-
cess. Indeed, even the most elegant study design will not
overcome the damage that is caused by the use of unreliable
measurement procedures [6]. For example, biased sample
selection may occur when patients are selected based on an
unreliable measurement procedure, and the sample size that
is required to detect an important treatment difference (ı)
may increase substantially when the outcome of interest is
quantified using an unreliable measurement procedure. As
an illustration of the latter issue, consider a situation where
a t-test is used to evaluate the treatment effect on the pri-
mary endpoint in a clinical trial with two treatment groups.
When the measurement procedure that is used to quantify
the primary endpoint has perfect reliability (i.e., R D 1), the
required sample size to detect ı equals n�. However, when
this measurement procedure has a less-than-perfect reliabil-
ity (i.e., R < 1), the required sample size becomes n D n�

R (for
details, [6]). Thus, for example, when R D 0.50, the required
sample size to detect ı doubles compared with what would
have been needed when R D 1. Clearly, an increase in the
required sample size is an issue in nearly all clinical studies
(e.g., increased study duration and cost) – and it may even
make the conduct of the study infeasible (e.g., clinical trials in
rare diseases).

Aim and organization of the paper The main aim of the present
paper is to illustrate how reliability can be estimated in a flex-
ible way using linear mixed-effects models (LMMs). As will
be detailed below, LMMs can separate the mean and the
variance structures in the data – which allows for relaxing
the strong assumptions that are needed to apply the con-
ventional methods to estimate reliability. Further, LMMs can
deal with data structures where different subjects have a
different number of repeated measurements (2 or more) –
which may or may not be regularly spaced. Finally, LMMs are
so-called likelihood-based methods that provide valid results
when the missingness mechanism is missing at random (MAR)
[7]. MAR means that the missingness may depend on the
observed outcomes (e.g., the first measurement X1) but not
on unobserved outcomes. MAR is a substantially less restric-
tive assumption than missing completely at random,and is
thus more likely to hold in practice [4].

The remainder of the paper is organized in the following way.
In Section 2, a case study is introduced that will be used through-
out this paper to illustrate the methodology. In Section 3, an
exploratory analysis of the case study is conducted. In Section
4, the LMM-based approach to estimate reliability is detailed.
Section 5 discusses the results. A Web Appendix is also pro-
vided in which additional materials are presented. In particular, it
details all the required computations using the newly developed
R software package CorrMixed and SAS.

2. CASE STUDY

Pikkemaat et al. [8] performed an experiment where the cardiac
output and stroke volume of N D 14 pigs was changed by
increasing positive end-expiratory pressure (PEEP) levels (0, 5, 10,
15, 20, and 25 cm H2O). The number of times that a particular
PEEP level was used varied from animal to animal. For each PEEP
level, stroke volume was measured by the continuous approxi-
mately normally distributed variable electrical impedance tomog-
raphy (EIT)-based stroke volume (SV)-related signal. In each ani-
mal, four identical experiments were conducted (referred to as
Cycles 1 to 4). The number of repeated ZSV measurements across
PEEP levels and cycles in an animal ranged between 9 and 47.
In the analyses in the succeeding text, it is assumed that all the
measurements are equally spaced.

Pikkemaat et al. [8] were interested in estimating the levels of
association between the repeatedly measured ZSV and transpul-
monary thermodilution outcomes within an animal. As detailed in
Section 1, it is also worthwhile to evaluate the reliability of these
repeated measurements. Such analyses (not considered in [8]) will
be the focus of the current paper. Given the complex design of the
study, it is recommended to use a flexible LMM-based technique
to estimate reliability (Section 4) – rather than the conventional
techniques that were discussed in the Introduction.

As noted earlier, the study included a total of 14 pigs. However,
the data of n D 2 animals could not be evaluated because of
technical reasons, and these animals were thus excluded from the
analyses. Further, there were n D 2 animals who appeared to have
a ‘clinically deviating’ profile (as judged by the experimenters).
These animals were kept in the current analyses, but a sensitivity
analysis showed that the estimated reliabilities were not sub-
stantially affected by the inclusion or exclusion of these animals
(see Web Appendix Part II). Note that the data for PEEP level 25
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were included in the current analysis, as well as in the Pikkemaat
et al. [8] study, although they were not explicitly mentioned in the
latter.

3. EXPLORATORY DATA ANALYSIS

Figure 1 shows the individual profiles (gray lines) of ZSV as a func-
tion of measurement moment. As can be seen, there is substantial
between – as well as within – animal variability. Further, drop-out
is substantial, that is, there are less observations at later measure-
ment moments compared with earlier measurement moments.
This is more clearly depicted in Figure 2, where the number
of available observations at each of the different measurement
moments are shown.
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Figure 1. Individual profiles (gray lines) and mean values (black line) of the zero
shear viscosity (ZSV) outcome as a function of time of measurement.
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Figure 2. Number of observations for the zero shear viscosity outcome as a function
of time of measurement.

Figure 1 also shows that the average evolution over time
(solid black line) exhibits a rather complex shape that cannot be
modeled in a straightforward way by using linear or quadratic
polynomials. Therefore, it is useful to consider a more general
family of parametric models that are based on so-called fractional
polynomial functions [9].

Fractional polynomials. The idea is to fit regression models
with m terms of the form tp, where the exponents p are
selected from a small predefined set S of both integer and
non-integer values. The linear predictor for a fractional poly-
nomial of order M for covariate t (here: measurement point in
time) on the mean ZSV is then defined as

ˇ0 C

MX
mD1

ˇmtpm . (3)

Each power pm is chosen from a restricted set, typically S D
f�2, �1, �0.5, 0, 0.5, 1, 2, 3g. Note that when M D 2 and p1 D

p2, the linear predictor (3) becomes ˇ0Cˇ1tp1 Cˇ2tp1 log.t/.
Also, when p D 0, this is taken to refer to log.t/ [9]. In prac-
tice, all possible models of degree 1 to M are fitted. Thus, for
M D 1, each of the eight values of S are used for the predic-
tor tp1 , for M D 2 each of the 36 combinations of powers are
used for the predictors tp1 and tp2 , and so on. Subsequently,
the ‘best’ fitting model is selected. This choice can be made
in an informal way (i) based on Akaike’s Information Criterion
(AIC, where a lower value is indicative of a better model fit)
and/or (ii) by graphically evaluating the fit of the model with
the observed data. The AIC adds the number of model param-
eters as a penalty to the log likelihood of the model, which
may help to avoid over-fitting (even though one still may want
to be careful not to select an overly complex model, in partic-
ular when a large number of candidate powers is considered).
The main advantage of using fractional polynomials (rather
than regular polynomials) is that they allow for a much more
flexible parametrization, that is, a large number of different
shapes of curves can be captured by even a relatively small M.
Application to the case study In the analysis of the case study,
fractional polynomials of order M D 1 to M D 5 were consid-
ered using the standard set S D f�2, �1, �0.5, 0, 0.5, 1, 2, 3g
for the powers pm. Note that it is possible to use a more
extensive set of values for S if the original set does not pro-
vide an adequate result, but the number of models that have
to be fitted (and thus also the required computational time)
increases sharply when the number of elements in S increases.
For example, when the set S includes eight elements (the stan-
dard set), a total of 792 fractional polynomials of degree 5 can
be made. However, when the set S D f�3, �2.75, : : : , 3g is
used (25 elements), a total of 118,755 fractional polynomials
of degree 5 can be made. Similarly, M can be increased, but
this will again yield a sharp increase in the number of models
to be evaluated.

Thus, regression models that included linear predictors for frac-
tional polynomials of order M D 1 to M D 5 (Eq. (3)) were fitted
to the data of the case study. Table I shows the powers pm of
the models of order 1 to 5 that had the lowest AIC values. As
can be seen, the model with M D 3 had the lowest overall AIC
value. Figure 3 shows the predicted mean ZSV as a function of
measurement moment for this model.

Pharmaceut. Statist. 2016 Copyright © 2016 John Wiley & Sons, Ltd.
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Table I. Fractional polynomial results.

M power pm AIC

1 �0.5 3788.703
2 0.5, 0.5 3786.096
3 2, 2, 3 3775.281
4 0.5, 1, 2, 2 3776.389
5 �2,�2, 0, 2, 3 3778.221
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Figure 3. Observed means as a function of time of measurement (solid line) and
fitted fractional polynomial of degree m D 3 (dashed line). ZSV, zero shear viscosity.

Based on these results, the fractional polynomial of degree 3
was retained as the ‘best’ model for the subsequent analyses.
Thus, in the LMM analyses detailed below, the relation between
time of measurement t and the mean ZSV will be modeled as
ˇ1t2 C ˇ2t2 log.t/C ˇ3t3.

4. ESTIMATING RELIABILITY USING
MIXED-EFFECTS MODELS

In this section, the reliability of the ZSV will be estimated using
a flexible approach that is based on LMMs. The LMM is briefly
introduced in Section 4.1 (for more details, e.g., [7,10,11]), and
the LMM-based approach to estimate reliability is applied to the
case study in Section 4.2. For conciseness, in the latter section,
only a summary of the main results is given, and no reference
to software tools that can be used to obtain the results is made.
However, full details can be found in the Web Appendix Parts I–V.

4.1. The linear mixed-effects model

A LMM can be written as

Yi D Xiˇ̌̌ C Zibi C """i , (4)

where Yi is the response vector for subject i (with i D 1, 2, : : : , n
subjects in the study), Xi and Zi are the known design matrices

for the fixed and random effects, ˇ̌̌ is the vector that contains the
fixed effects, bi is the vector that contains the random effects,
and """i is the vector that contains the measurement error (with
bi � N.0, D/ and """i � N.0, †††i/, where D and †††i are gen-
eral variance–covariance matrices). Model (4) thus assumes that
the vector of repeated measurements for each subject follows
a linear regression model where some of the parameters are
population-specific (i.e., parameters that are the same for all sub-
jects in the population; the fixed effects) and other parameters
are subject-specific (i.e., parameters that differ for all subjects; the
random effects).

The residual component """i is often further decomposed as
"""i D """.1/i C """.2/i . Here, """.2/i is a component of serial correlation
and """.1/i is a component of measurement error. Serial correla-
tion results from the fact that within a subject, the (residuals of )
observations that are closer in time are often ‘more similar’ (i.e.,
more strongly correlated) than observations that are more dis-
tant in time. It is assumed that """.1/i � N

�
0, �2Ini

�
(with Ini an

identity matrix of dimension ni = the number of repeated mea-
surements in a subject) and """.2/i � N

�
0, �2Hi

�
(with Hi the serial

correlation matrix that only depends on i through the number of
repeated measurements ni and the time points j and k at which
the measurements are taken). The .j, k/ element hijk of Hi can then
be modeled as hijk D g.j tij � tik j/ for a decreasing function
g. Two frequently used functions are the exponential and Gaus-
sian correlation functions, defined as g.uj, k/ D exp.��uj, k/ and

g.uj, k/ D exp
�
��u2

j, k

�
, respectively.

4.2. Case study analysis

The mean structure of the model. The LMMs that will be fitted
to the case study dataset include an intercept, measurement
moment, PEEP, and Cycle as fixed effects. PEEP and Cycle are
dummy-coded with five and three dummies, respectively. The
relation between measurement point and the ZSV outcome
is modeled as ˇ1t3 C ˇ2t2 C ˇ3t2 log.t/ (check the Fractional
polynomial section).
The covariance (correlation) structure of the model. In the anal-
yses in the succeeding text, three LMMs with the same
fixed-effect structure (previous paragraph) but different vari-
ance structures will be considered.

Model 1 is a random intercept model, that is, a LMM that
only contains a random intercept in the random part of the
model:

Yij D �ij C b0i C "ij , (5)

where Yij is the observed endpoint at measurement time j for
subject i, �ij is the mean as a function of the fixed effects, b0i

is the random intercept, and "ij is the residual. Based on this
model, the reliability of the repeated observations taken at
measurement times tk and tj can be estimated as (for details,
[12]):

R.tj , tk/ D R D
d

dC �2
, (6)

where d is the variance of the random intercept and �2 is the
residual variance. As can be seen in Eq. (6), the random inter-
cept model assumes that any two observations measured at
different times have the same R. This assumption is often not
realistic when repeated measures are considered, that is, mea-
surements that are closer in time can be expected to be more
strongly correlated than measurements that are more distant
in time.

Copyright © 2016 John Wiley & Sons, Ltd. Pharmaceut. Statist. 2016
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Table II. Summary of the covariance structures used in
Models 1–3, and the impact on the estimated reliabilities.

Model Estimated reliabilities R

Model 1: Random Intercept OR is identical for all pairs .tj , tk/

Model 2: Random intercept OR only depends on the time lag
and serial component ujk D tk � tj

Model 3: Random intercept, OR is different for all pairs .tj , tk/slope, and serial component

Note. tj = measurement at time j.

Therefore, Model 2 extends Model 1 by adding a serial correla-
tion component:

Yij D �ij C b0i C ".1/ij C ".2/ij , (7)

where �ij , b0i are the same as in Model 1 and ".1/ij , ".2/ij are mea-
surement error and serial correlation components, respectively.
Based on Model 2, the reliability of the repeated observations
taken at measurement times tk and tj can be estimated as (for
details, [12]):

R.tj , tk/ D R.ujk/ D

dC �2 exp

�
�u2

jk

�2

�

dC �2 C �2
, (8)

where ujk D tk � tj , �2 D Var.".1/i/ and �2 D Var.".2/i/. Model
2 thus no longer assumes that R remains constant for all pairs of
measurements. Instead, it models R as a function of the time lag
ujk between two measurements. As can be seen, a stronger serial
effect (�2) leads to a faster decreasing R.ujk/.

Finally, Model 3 further extends Model 2 by including a random
slope for measurement moment:

Yij D �ij C b0i C b1itj C ".1/ij C ".2/ij , (9)

where�ij , b0i , ".1/ij , ".2/ij are the same as in Models 1 and 2, and b1i

is the random slope for measurement moment. Based on Model
3, the reliability of the repeated observations measured at times
tk and tj can be estimated as (for details, [12]):

R.tj , tk/ D

zjDz0k C �
2 exp

�
�u2

jk

�2

�
q

zjDz0j C �
2 C �2

q
zkDz0k C �

2 C �2
, (10)

where ujk D tk � tj , and zj , zk are the design rows in Z corre-
sponding to time j and k, respectively. As can be seen in Eq. (10),
Model 3 no longer assumes that measurements taken at different
time points, but with the same time lag have the same R. Instead,
it provides estimates of reliability for all pairs of measurements.

Table II summarizes the covariance structures that are used in
the different models and their impact on the estimated R.

4.2.1. Model 1: random intercept model. When Model 1 was fitted
to the case study dataset, it was obtained that Od D 1901.611
and O�2 D 2413.022, yielding OR D 0.441 (Eq. (6)). A CI around OR
can be computed by using a (non-parametric) bootstrap or the
Delta method (for details, see the Web Appendix Part VI). The
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Figure 4. Estimated reliabilities (solid lines) and 95% Confidence Intervals (dashed
lines) for zero shear viscosity based on Model 1 (upper left), Model 2 (upper right)
and Model 3 (bottom). For Model 3, no Confidence Intervals are provided to avoid a
cluttered figure. The utmost left line marked with t1 depicts the estimated correla-
tions between t1 and all other measurements, the line next to that one depicts the
correlations between t2 and measurements 2–45, and so on.

bootstrap-based 95% CI (using 500 bootstrap samples) equaled
Œ0.198; 0.618�. The Delta method-based CI was similar and largely
overlapped, that is, Œ0.189; 0.636�. Figure 4 (top left) illustrates the
results (the bootstrap-based CI is shown).

Overall, it can be concluded that OR is moderate and that there
is substantial uncertainty in OR (which is not surprising given the
small number of animals in the study).

4.2.2. Model 2: random intercept and serial correlation. When
Model 2 was fitted to the data of the case study, the estimated
covariance parameters were Od D 1349.650, O�2 D 2489.351, O� D
3.581, and O�2 D 382.795. Thus, after correction for the fixed
effects, the covariance parameter estimates showed considerable
remaining serial components.

Figure 4 (top right) shows the estimated R.ujk/ (Eq. (8)) and
their 95% CIs based on a bootstrap (the Delta method-based
CIs were similar; data are shown in the Web Appendix Part I).
As can be seen, the estimated R were high for small time lags
(e.g., OR.ujk D 0/ D 0.865 and OR.ujk D 1/ D 0.751) and sub-
sequently decreased until they remained essentially constant at
OR � 0.320 for measurements with time lags of about ujk D 10

and higher. It can also be observed that the CIs around OR.ujk/

were narrower for measurements with smaller time lags (e.g., for
time lags ujk D 0 and ujk D 1, the CI95% D Œ0.817, 0.906� and
CI95% D Œ0.654, 0.836�, respectively) and subsequently widened
until they remained stable around time lag ujk D 10 with CI95% D

Œ0.045, 0.530�.

4.2.3. Model 3: random intercept, slope, and serial correlation.
When Model 3 was fitted to the data of the case study, the
estimated covariance parameters were O�2 D 1952.970, O� D

Pharmaceut. Statist. 2016 Copyright © 2016 John Wiley & Sons, Ltd.
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3.290, O�2 D 373.043, and

OD D

�
3219.869 �77.377
�77.377 3.686

�
.

As noted earlier, based on Model 3 the estimated R.tk , tj/ are dif-
ferent for all pairs of measurements (Eq. (10)). Figure 4 (bottom)
shows the results graphically. In this figure, the utmost left line
(marked with t1) depicts the estimated R.t1, tj/, that is, the esti-
mated reliabilities of ZSV taken at measurement times 1 and 2–45.
The line next to that one shows the estimated R.t2, tj/, etc. The

figure shows that OR.tk , tj/ is high when the time lag u is small
and flattens out for longer time lags. Further, depending on the
particular pair of measurement moments .tk , tj/ that is consid-

ered, the slope and amount of decline in OR.tk , tj/ as a function

of time lag differs. For example, when considering OR.t1, tj/, it can
be seen that the estimated reliabilities decline particularly strong
for the first few subsequent measurements (say, until about t8)
and continue to decline for all tj afterwards at a slower pace.

Instead, for OR.t20, tj/, there is only a substantial decline in the
estimated reliabilities for the first few subsequent measurements
(say, until about t25) after which the estimated reliabilities remain
essentially constant.

Based on Model 3, estimates of reliability are provided for each
pair of measurements, and the same obviously holds for the CIs.
To avoid cluttered figures, no CIs were added to Figure 4 (bottom).
By means of illustration, Figure 5 provides 95% bootstrap-based
CIs for OR.t1, tj/ (left) and OR.t20, tj/ (right). As can be seen, the CIs

increase as a function of time and tend to be wider for OR.t20, tj/

than for OR.t1, tj/ (as expected).

4.2.4. Selecting the most appropriate model. Based on the likeli-
hood ratio (LR) test statistic G2, the fit of Models 1–3 can be
formally compared (for details, [7]). G2 is equal to �2 times the
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Figure 5. OR.t1, tj/ (left) and OR.t20, tj/ (right) based on Model 3 and their 95%
Confidence Intervals for the zero shear viscosity outcome.

difference of the log likelihoods of the models being compared.
Before discussing the results for the case study, some general
remarks are useful. First, when interest is in testing the need
for including random effects in the model, the usual procedure
where the test statistic G2 is compared with a �2 distribution with
the number of degrees of freedom equal to the difference in the
model parameters to be estimated is no longer valid. For exam-
ple, consider the situation where interest is in testing whether
one or two random effects are needed (Model 2 versus Model 3).
This corresponds to testing that d12 D d21 D d22 D 0. To test
this hypothesis, a mixture with equal weights 0.5 for �2

1 and �2
2

is needed (denoted by �2
1:2), because the variance d22 cannot be

negative and thus the hypothesis test of interest is on the bound-
ary of the parameter space (for details, [7]). Second, the results of
the LR tests should be interpreted with caution because of the
small sample size in the case study. Alternative testing procedures
that are based on permutation tests (e.g., [13]) could provide a
more viable alternative, but these methods are beyond the scope
of the present paper. Third, the valid use of LR tests typically
requires that the models are fitted using Maximum Likelihood
estimation. The results provided earlier used Restricted Maximum
Likelihood (REML), but valid LR tests for comparing nested mod-
els with different covariance structures can still be obtained under
REML estimation when the models that are compared have the
same mean structure [7] – which was the case here, as discussed
earlier.

The log likelihood values for Models 1–3 are shown in Table III.
As can be seen, the random intercept model with serial correla-
tion (Model 2) fitted the data significantly better than the random
intercept model with no serial correlation (Model 1), p < 0.001.
This test thus rejects the null hypothesis that there is no serial cor-
relation process, that is, it can be concluded that observations that
are closer in time are stronger correlated than observations that
are more distant in time. Further, adding a random slope to the
random intercept model with serial correlation (Model 3 versus
Model 2) significantly improves the model fit, p D 0.015 – though
the gain was quite modest.

Model 3 is the model with the largest likelihood. It would be
preferred if we would solely rely on statistical arguments. How-
ever, from an applied perspective – that is, also considering the
practical usefulness of the results for a clinician or researcher –
Model 2 is arguably to be preferred over Model 3 because the for-
mer leads to reliability estimates that only depend on the time
lag between two measurements. In contrast, Model 3 yields dif-
ferent reliability estimates for all possible pairs of measurements.
Model 2 thus provides a much more parsimonious result com-
pared with Model 3 – while the fit of both models is roughly
comparable. Notice that the likelihood ratio tests identify the best
fitting model among the models that were under consideration.
However, when a model has been selected, the question remains

Table III. Fit indices of the different models for the ZSV outcome.

# Pars.
Rand. Ser. logL G2 Test p

Model 1 1 0 �2328.910
Model 2 1 2 �2125.135 407.551 Model 2 vs. 1: �2

2 < 0.001

Model 3 3 2 �2121.399 7.472 Model 3 vs. 2: �2
1:2 0.015

Note. logL = log likelihood, G2 = �2 the difference of two log likelihood values.
Rand., random effect parameters; ser., serial components; ZSV, zero shear viscosity.
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whether this model fits the data sufficiently well. Residuals and
influence diagnostics are useful in this respect. In Part VII of the
Supporting Information, a residual analysis is conducted and the
extent to which particular animals exert a strong influence on
the results (i.e., the REML distances of the models, the estimated
fixed-effects parameters, the estimated covariance components,
and the estimated reliability coefficients) is evaluated. Overall, the
impact of excluding an animal on the results was relatively small
for Models 2–3. For Model 1, the impact of deleting an animal
on the results was more substantial. Further, the residual analysis
showed that there were no major departures of normality.

5. DISCUSSION

The conventional methods to estimate reliability (e.g., the
well-known Pearson correlation coefficient) require assumptions
that are often not met in real-life studies (e.g., parallel measure-
ments, equally spaced test-retest intervals, etc.). The main aim of
the current paper was to present a general and flexible approach
to estimate reliability that is based on LMMs. It was shown that
this approach can be successfully applied even in a ‘challenging’
dataset like in the presented case study – where the number of
independent subjects is low, different subjects have a different
number of repeated observations, and several covariates have to
be taken into account. Overall, the analysis of the case study sug-
gested that the reliability of ZSV was high (and its CIs narrow)
when the time lag was small. For larger time lags, the reliability
estimates decreased and their CIs widened.

Some critical remarks are in place. First, despite the major dif-
ferences between the conventional and the LMM-based methods
to estimate reliability, there are also some obvious similarities. For
example, the expressions to estimate reliability based on Model 1
(Eq. (6)) and the conventional approach (Eq. (2)) are very similar
(i.e., both are ratios of variances). However, a fundamental differ-
ence between both methods is that the LMM-based approach
does not require the parallel measurement assumption. The rea-
son for this is that the mean and variance structures can be clearly
separated in LMMs (check discussion earlier). For example, when
the means at different time points are different (as was observed
in the case study, Figure 1), systematic effects of time and other
covariates can be taken into account by including them into the
fixed-effect part of the model (as was done here). In essence,
the main difference between the conventional and LMM-based
approaches to estimate reliability is that the former requires a
set of assumptions that are taken care of in the study design,
whereas the latter takes care of these assumptions through mod-
eling at the analysis stage [3]. There is however a price to pay
for the increased flexibility of the LMM-based approach, that is,
it requires substantially more complex statistical analyses com-
pared with the conventional methods to estimate reliability. We
tried to circumvent this issue by developing an R package (Cor-
rMixed) that allows for obtaining reliability estimates based on
Models 1–3 in a relatively straightforward way. The Web Appendix
(Parts IV and V) provides full details on how the analyses can be
conducted in practice.

Second, in the present paper, the focus was entirely on the
random effect structure of the models because we were inter-
ested in estimating the reliability of the outcomes. Apart from
estimating reliability, medical practitioners are also often inter-
ested in obtaining so-called normative data. Normative data are
used to convert a patient’s ‘raw’ outcomes into relative measures
that reflect the proportion of demographically-matched healthy

controls in the population who have a lower outcome value
compared with this patient. A well-known example are growth
curves of young children. Such normative data (nomograms) for
repeated measurements can be obtained without any substantial
additional effort using the same type of models that were fitted
in the present paper. The only difference is that the focus will
then be on the fixed-effect part of the model – rather than on the
random effect structure (for details, [14]).

Third, the outcome that was considered in the case study
was a normally distributed (Gaussian) variable. One may also
be interested in estimating the reliability of repeated measure-
ments of outcomes of a different distributional nature, for exam-
ple, binary (yes/no, health/sick) or categorical ordered outcomes.
Such extensions are possible, but not trivial. The interested reader
is referred to Vangeneugden et al. [15].

Fourth, in the analysis of the case study, the fixed-effect
structures were kept constant for Models 1 to 3 (because we
were primarily interested in evaluating the impact of different
random-effect structures on the estimated reliabilities). In the
Web Appendix (Part III), a sensitivity analysis is conducted where
the impact of using different plausible fixed-effect structures on
the estimated reliabilities is evaluated. Overall, the analyses indi-
cated that the estimated reliabilities are not sensitive to the
fixed-effect part of the model (provided that the mean structure
of the model is supported by the data).

Finally, in the present paper, no time-varying covariates (other
than measurement occasion itself ) were considered, but depend-
ing on the study at hand it may be useful to include such
covariates. For example, consider a setting where one is inter-
ested in estimating the reliability of a psychiatric rating scale that
was scored by different physicians at the different measurement
moments. When only a limited number of raters are involved in
the study, the methodology that was proposed earlier can still
be used in a straightforward way. Indeed, one can then simply
include rater as a (dummy-coded) fixed-effect in the mean struc-
ture of the model. On the other hand, when the number of raters
is large, it is more sensible to include rater in the random-effect
part of the model. Such a model cannot be fitted in the current
version of the CorrMixed package, but it is straightforward to fit
such a model using SAS.

On a related note, in the present paper, interest was primarily
in the estimation of the reliability of a single outcome that was
repeatedly measured within the same subject. It might also be of
interest to estimate how strongly the vectors of two outcomes are
correlated with each other. For example, consider a setting where
two raters assess all patients at all measurement moments. Here, it
would be natural to study the correlation between the vectors of
scores to evaluate the level of agreement between the two raters.
Or, as another example, consider a setting where there are two
alternative measurement procedures for the same latent variable.
When one of the two measurement procedures is more ‘difficult’
to conduct (e.g., is more expensive, more painful for the patient,
requires more time to obtain the test results, etc), it may be of
interest to estimate the correlation between the measurements
obtained by both procedures. Indeed, when it can be shown that
there is a high correlation between the vectors of outcomes, the
‘easier’ measurement procedure may replace the more difficult
one – in the same spirit as is done when a surrogate endpoint is
used to replace the true endpoint in a clinical trial (individual-level
surrogacy; for details, [16]). The quantification of the correlation
between two vectors of outcomes is however beyond the scope
of the present paper, as different statistical techniques are needed
to estimate this quantity (e.g., [17]).

Pharmaceut. Statist. 2016 Copyright © 2016 John Wiley & Sons, Ltd.
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